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1 Introduction

1.1 A Brief Introduction

Here we should have demonstrated the solution to problems in Chapter

One in Machine Learning, A Probabilistic Perspective(MLAPP). Since the

number of problem in Chapter is zero, we save this section as an introduction

to this document, i.e.a solution manual.

This document provides detailed solution to almost all problems of

textbook MLAPP from Chapter One to Chapter Fourteen(Chinese version)

/ Twenty-one(English version). We generally save the restatement of prob-

lems for readers themselves.

There are two class for problems in MLAPP: theortical inference and

pratical projects. We provide solution to most inference problems apart

from those which are nothing but straightforward algebra(and few which

we failed to solve). Practical problems, which base on a Matlab toolbox,

are beyond the scope of this document.

1.2 On Machine Learning: A Probabilistic Perspective

Booming studies and literatures have made the boundary of ”machine

learning” vague.

On one hand, the rapid development of AI technology has kept the

society shocked, which also results in sharply increase in number of students

who would try to take related courses in colleges. On the other hand,

some scholars are still uncertain in learning-related theories, especially deep

learning.

The extraordinary achievements of machine learning in recent days of-

ten make one forget that this discipline has undergone a long evolution and

whose establishment dates back at least to the studies of ”electronic brains”

in the 1940s. Be that as it may, machine learning has not been defined as

a ”closed” theory. Even in the some community of researchers, machine

learning are crowned metaphysics or alchemistry. Personally, I believe tha

being called metaphysics is a common experience shared by many branches

of theory which are undergoing the most rapid development.
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To be a completed theory, machine learning is still looking for a way

to conclude itself in a closed system. The most successful attempt so far

has been the one based on probability. As commented by David Blei from

Princton on the back of MLAPP: ”In Machine Learning, the language of

probability and statistics reveals important connections between seemingly

disparate algorithms and strategies. Thus, its readers will become articulate

in a holistic view of the state-of-art and poised to build the next generation

of machine learning algorithms.”

The crucial idea in MLAPP is: machine learning is tantamount to

Bayesian Statistics, which draws connections between numerous ”indepe-

dent” algorithms. But the history of Bayesian statistics(which can be traced

back to days of Laplace) outlengths the one of machinea learning a lot.

MLAPP is not noval in holding such an idea. C.M.Bishop’s Pattern Recog-

nition and Machine Learning is another typical example. Both of them are

considered as classical textbooks in elementary machine learning.

In general, MLAPP reduces the difficulty of the entire book at the

expense of partially deduced completeness(for the first seven chapters). It

covers a wider range of models and is suitable for those with background

in mathemathcal tools. The chapters that concerning classical probabilistic

models (e.g, chapter 2, 3, 4, 5, 7, 8, 11, 12) is comparable to PRML. But

due to the reordering and more details, they worth a read for one who have

finished reading PRML.

1.3 Constitutions of this Document

The motivation for writing this document is that I need to read text-

book MLAPP after selecting machine learning course, but I failed to find

any free compiled solution manuals. Although several Github projects have

started working on it, the velocity has been too slow. Also I want to focus

more on the theoretical part of the text rather than the implementation

code.

Hence I began working on this document. It is completed(first version,

Chapter One to Chapter Fourteen) within the first two weeks before the

official semester. Bacase of the hurry process, it is suggested that readers
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should read from a critical perspective and not hesitate to believe in ev-

erything I have written down. In the end, I hope that readers can provide

comments and revise opinions. Apart from correcting the wrong answers,

those who good at using MATLAB, Latex typesetting or those who are will-

ing to participate in the improvement of the document are always welcome

to contact me.

22/10/2017

Fangqi Li

Munich, Germany

solour_lfq@sjtu.edu.cn

ge72bug@tum.de

solour_lfq@sjtu.edu.cn
ge72bug@tum.de
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1.4 Updating log

22/10/2017(First Chinese compilation)

02/03/2018(English compilation)

06/03/2018(Begin Revising)

24/03/2018(First Revision)
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2 Probability

2.1 Probability are sensitive to the form of the question

that was used to generate the answer

Denote two children by A and B.

We use the following denotations:

E1 : A is a boy,B is a girl

E2 : B is a boy,A is a girl

E3 : A is a boy,B is a boy

In question a:

P (E1) = P (E2) = P (E3) =
1

4

P (one girl|one boy) =
P (E1) + P (E2)

P (E1) + P (E2) + P (E3)
=

2

3

For question b,w.l.o.g, assume child A is observed:

P (B is a girl|A is a boy) =
1

2

2.2 Legal reasoning

Let E1 denote the event ”the defendant commited the crime” and E2

denotes ”the defendant has special blood type” respectively. Thus:

p(E1|E2) =
p(E1, E2)

p(E2)
=
p(E2|E1)p(E1)

p(E2)

=
1 · 1

800000
1

8000

=
1

100

2.3 Variance of a sum

By straightforward calculation:

var[X + Y ] =E[(X + Y )2]− E2[X + Y ]

=E[X2]− E2[X] + E[Y 2]− E2[Y ] + 2E[XY ]− 2E2[XY ]

=var[X] + var[Y ] + 2cov[X,Y ]
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2.4 Bayes rule for medical diagnosis

We use Ei, Eh and Ep denotes whether one is ill or health, and one has

been detected as positive. Applying Bayes’s rules:

P (Ei|Ep) =
P (Ei)P (Ep|Ei)

P (Ei)P (Ep|Ei) + P (Eh)P (Ep|Eh)

=0.0098

2.5 The Monty Hall problem(The dilemma of three doors)

The answer is b. We use Ea,i denotes the event that something happens

to the ith box, a can be p(prize is in ith box), c(the gamer pick ith box),

o(the host opens ith box). We assumes the participant choose the first box

and the host reveals the third one. Applying Bayes’s rules:

P (Ep,1|Ec,1, Eo,3) =
P (Ec,1)P (Ep,1)P (Ec,3|Ep,1, Ec,1)

P (Ec,1)P (Eo,3|Ec,1)

=
P (Ep,1)P (Ec,3|Ep,1, Ec,1)

P (Eo,3|Ec,1)

=
1
3
· 1

2
1
3
· 1

2
+ 1

3
· 0 + 1

3
· 1

=
1

3

In the last step we summarize over the potential location of the prize.

We conclude that it is always better to switch to another box after the host

revealing one.

2.6 Conditional Independence

In question a, we have:

p(H|e1, e2) =
p(H)p(e1, e2|H)

p(e1, e2)

Thus the answer is (ii).

For question b, we have further decomposition:

p(H|e1, e2) =
p(H)p(e1|H)p(e2|H)

p(e1, e2)
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So both (i) and (ii) are sufficient obviously. Since:

p(e1, e2) =
∑
H

p(e1, e2, H)

=
∑
H

p(H)p(e1|H)p(e2|H)

(iii) is sufficint as well since we can calculate p(e1, e2) independently.

2.7 Pairwise independence does not imply mutual inde-

pendence

Let’s assmue three boolean variables x1, x2, x3. x1 and x2 have values

of 0 or 1 with equal possibility independently:

p(x1, x2) = p(x1)p(x2)

p(x1 = 0) = p(x2 = 0) =
1

2

And x3 = XOR(x1, x2). Now we have:

p(x3 = 1) =
∑
x1,x2

p(x1, x2)p(x3 = 1|x1, x2)

=
1

4
· 0 +

1

4
· 0 +

1

4
· 1 +

1

4
· 1

=
1

2

Also:

p(x3 = 1, x1 = 1) =
∑
x2

p(x2)p(x3 = 1, x1 = 1|x2)

=
∑
x2

p(x2)p(x1 = 1)p(x3 = 1|x1 = 1, x2)

=
1

4
= p(x3 = 1) · p(x1 = 1)

Thus x3 is pairwise independent w.r.t x1 and x2. But given x1 and x2,

x3 is uniquely determined and mutual independence failes.
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2.8 Conditional independence iff joint factorizes

We prove 2.129 is equal to 2.130.

Firstly, by denoting:

g(x, z) = p(x|z)

h(y, z) = p(y|z)

We have the first half of proof.

Secondly we have:

p(x|z) =
∑
y

p(x, y|z)

=
∑
y

g(x, z)h(y, z)

=g(x, z)
∑
y

h(y, z)

p(y|z) =h(y, z)
∑
x

g(x, z)

And:

1 =
∑
x,y

p(x, y|z)

=(
∑
x

g(x, z))(
∑
y

h(y, z))

Thus:

p(x|z)p(y|z) =g(x, z)h(y, z)(
∑
x

g(x, z))(
∑
y

h(y, z))

=g(x, z)h(y, z)

=p(x, y|z)

2.9 Conditional independence

From a graphic view, both arguments are correct. But from a general

view, both of them do not have a decomposition form, thus false.
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2.10 Deriving the inverse gamma density

According to:

p(y) = p(x)|dx
dy
|

We easily have:

IG(y) =Ga(x) · y−2

=
ba

Γ(a)
(
1

y
)(a−1)+2e−

b
y

=
ba

Γ(a)
(y)−(a+1)e−

b
y

2.11 Normalization constant for a 1D Gaussian

This proof should be found around any textbook about multivariable

calculus.Omitted here.

2.12 Expressing mutual information in terms of entropies

I(X;Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

=
∑
x,y

p(x, y) log
p(x|y)

p(x)

=
∑
x,y

p(x, y) log p(x|y)−
∑
x

(
∑
y

p(x, y)) log p(x)

=−H(X|Y ) +H(X)

Inversing X and Y yields to another formula.
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2.13 Mutual information for correlated normals

We have:

I(X1;X2) =H(X1)−H(X1|X2)

=H(X1) +H(X2)−H(X1, X2)

=
1

2
log 2πσ2 +

1

2
log 2πσ2 +

1

2
log(2π)2σ4(1− ρ2)

=− 1

2
log(1− ρ2)

(refer to Elements of Information Theory,Example 8.5.1)

We also give the derivation of Gaussian’s entropy here:

h =−
∫
p(x) ln p(x)dx

=−
∫
p(x)

{
−n

2
ln 2π − 1

2
ln |Σ| − 1

2
(x− µ)TΣ−1(x− µ)

}
dx

=
n

2
ln 2π +

1

2
ln |Σ|+ 1

2

∫
p(x)(x− µ)TΣ−1(x− µ)dx

=
n

2
ln 2π +

1

2
ln |Σ|+ 1

2
Ep[
∑
i,j

(xi − µi)Σ−1
ij (xj − µj)]

=
n

2
ln 2π +

1

2
ln |Σ|+ 1

2

∑
i,j

Ep[(xi − µi)(xj − µj)]Σ−1
ij

=
n

2
ln 2π +

1

2
ln |Σ|+ 1

2

∑
i,j

ΣjiΣ
−1
ij

=
n

2
ln 2π +

1

2
ln |Σ|+ 1

2
tr
{

ΣΣ−1
}

=
n

2
ln 2π +

1

2
ln |Σ|+ n

2

=
1

2
ln(2πe)n|Σ|

The trick here is to use the defintion of covariance and the trace mark.
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2.14 A measure of correlation

In question a:

r =1− H(Y |X)

H(X)
=
H(X)−H(Y |X)

H(X)

=
H(Y )−H(Y |X)

H(X)

=
I(X;Y )

H(X)

We have 0 ≤ r ≤ 1 in question b for I(X;Y ) > 0 and H(X|Y ) <

H(X)(properties of entropy).

r = 0 iff X and Y are independent.

r = 1 iff X is determined(not necassary equal) by Y .

2.15 MLE minimizes KL divergence to the empirical dis-

tribution

Expand the KL divergence:

θ = arg min
θ
{KL(pemp||q(θ))}

= arg min
θ

{
Epemp

[log
pemp

q(θ)
]

}
= arg min

θ

{
−H(pemp)−

∫
pemp(x) log q(x; θ)dx

}
≈ arg min

θ

{
−H(pemp)−

∑
x∈dataset

(log q(x; θ))

}

= arg max
θ

{ ∑
x∈dataset

log q(x; θ)

}
We end up in MLE. We use the weak form of the law of large numbers

in the fourth step and drop the entropy of empirical distribution in the last

step.

2.16 Mean, mode, variance for the beta distribution

Firstly, derive the mode for beta distribution by differentiating the pdf:

d

dx
xa−1(1− x)b−1 = [(1− x)(a− 1)− (b− 1)x]xa−2(1− x)b−2
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Setting this to zero yields:

mode =
a− 1

a+ b− 2

Secondly, derive the moment in beta distribution:

E[xN ] =
1

B(a, b)

∫
xa+N−1(1− x)b−1dx

=
B(a+N, b)

B(a, b)

=
Γ(a+N)Γ(b)

Γ(a+N + b)

Γ(a+ b)

Γ(a)Γ(b)

Setting N = 1, 2:

E[x] =
a

a+ b

E[x2] =
a(a+ 1)

(a+ b)(a+ b+ 1)

Where we have used the property of Gamma function. Straightforward

algebra gives:

mean = E[x] =
a

a+ b

variance = E[x2]− E2[x] =
ab

(a+ b)2(a+ b+ 1)

2.17 Expected value of the minimum

Let m denote the location of the left most point, we have:

p(m > x) =p([X > x]and[Y > x])

=p(X > x)p(Y > x)

=(1− x)2

Therefore:

E[m] =

∫
x · p(m = x)dx

=

∫
p(m > x)dx

=

∫ 1

0

(1− x)2dx

=
1

3
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3 Generative models for discrete data

3.1 MLE for the Beroulli/binomial model

Likelihood:

p(D|θ) = θN1(1− θ)N0

Log-Likelihood:

ln p(D|θ) = N1 ln θ +N0 ln(1− θ)

Setting the derivative to zero:

∂

∂θ
ln p(D|θ) =

N1

θ
− N0

1− θ
= 0

This ends in 3.22:

θ =
N1

N1 +N0

=
N1

N

3.2 Marginal likelihood for the Beta-Bernoulli model

Likelihood:

p(D|θ) = θN1(1− θ)N0

Prior distribution:

p(θ|a, b) = Beta(θ|a, b) = θa−1(1− θ)b−1

Posterior distribution:

p(θ|D) ∝p(D|θ) · p(θ|a, b)

=θN1+a−1(1− θ)N0+b−1

=Beta(θ|N1 + a,N0 + b)

Predictive distribution:

p(xnew = 1|D) =

∫
p(xnew = 1|θ) · p(θ|D)dθ

=

∫
θp(θ|D)dθ

=E(θ) =
N1 + a

N1 + a+N0 + b
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Calcualte p(D) where D = 1, 0, 0, 1, 1:

p(D) =p(x1)p(x2|x1)p(x3|x2, x1)...p(XN |xN−1, XN−2, ...X1)

=
a

a+ b

b

a+ b+ 1

b+ 2

a+ b+ 2

a+ 1

a+ b+ 3

a+ 2

a+ b+ 4

Denote α = a + b, α1 = a, α0 = b, we have 3.83. To derive 3.80, we

make use of:

[(α1)..(α1 +N1 − 1)] =
(α1 +N1 − 1)!

(α1 − 1)!
=

Γ(α1 +N1)

Γ(α1)

3.3 Posterior predictive for Beta-Binomial model

Straightforward algebra:

Bb(α′1, α
′
0, 1) =

B(α′1 + 1, α′0)

B(α′1, α
′
0)

=
Γ(α′0 + α′1)

Γ(α′0 + α′1 + 1)

Γ(α′1 + 1)

Γ(α′1)

=
α′1

α′1 + α′0

3.4 Beta updating from censored likelihood

The derivation is straightforward:

p(θ,X < 3) =p(θ)p(X < 3|θ)

=p(θ)(p(X = 1|θ) + p(X = 2|θ))

=Beta(θ|1, 1)(Bin(1|5, θ) + Bin(2|5, θ))

3.5 Uninformative prior for log-odds ratio

Since:

φ = log
θ

1− θ
By using change of variables formula:

p(θ) = p(φ)|dφ
dθ
| ∝ 1

θ(1− θ)

Hence:

p(θ) = Beta(θ|0, 0)
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3.6 MLE for the Poisson distribution

Likelihood (we use Poi in condition to represent the fact that we have

knowledge about the form of the distribution):

p(D|Poi, λ) =
N∏
n=1

Poi(xn|λ) = exp(−λN) · λ
∑N

n=1 xn · 1∏N
n=1 xn!

Setting the derivative of Log-Likelihood to zero:

∂

∂λ
p(D|Poi, λ) = exp(−λN) · λ

∑
x−1 ·

{
−Nλ+

N∑
n=1

xn

}
= 0

Thus:

λ =

∑N
n=1 xn
N

3.7 Bayesian analysis of the Poisson distribution

We have:

p(λ|D) ∝p(λ)p(D|λ)

∝ exp(−λ(N + b)) · λ
∑N

n=1 xn+a−1

=Gamma(a+
∑

x,N + b)

This prior distribution equals introduing b prior observations with mean
a
b
.

3.8 MLE for the uniform distrbution

The likelihood goes to zero if a < max(xn), so we must have â ≥
max(xn), likelihood lookes like:

p(D|a) =
N∏
n=1

1

2a

Which has a negative correlation with a, so:

â = max {xi}ni=1

This model assign p(xn+1) = 0 if xn+1 > max {xi}ni=1, which cause

discontinuity in predictive distribution, and is not an adorable feature.
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3.9 Bayesian analysis of the uniform distribution

The conjugate prior for uniform distribution if Pareto distribution:

p(θ) = Pareto(θ|K, b) = KbKθ−(K+1)[θ ≥ b]

Let m = max {xi}ni=1, the joint distribution is:

p(θ,D) = p(θ)p(D|θ) = KbKθ−(K+N+1)[θ ≥ b][θ ≥ m]

The marginal likelihood/evidence is:

p(D) =

∫
p(D, θ)dθ =

KbK

(N +K) max(m, b)N+K

Let µ = max {m, b}, the posterior distribution is again the form of a

Parato distribution:

p(θ|D) =
p(θ,D)

p(D)
=

(N +K)µN+K [θ ≥ µ]

θN+K+1
= Pareto(θ|N +K,µ)

3.10 Taxicab problem

For question a, we have D = {100}, m = max {D} = 100, N = 1.

Using a prior K = 0, b = 0, we have the posterior:

Pareto(θ|1, 100)

A for question b, with posterior mode given by (k = 1, thus mean

and variance does not exist):

mode = 100

To calculate the median:∫ median

m

kmkx−(k+1)dx =
1

2

Plug in figures and using the fact
∫
x−2dx = −x−1 + C, solve for

median = 200

In question c, we already had (from exercise 3.9) the predictive

distribution, in this case α = (b = 0,K = 0), β = (c = m,N + K = 1).

Plug them into the form of evidence:
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In case when x > m(the number of new taxi is larger than the one we

saw):

p(x|D,α) =
m

2x2

If x < m:

p(x|D,α) =
m

2m2
=

1

2m

We plug in m = 100 into the equations above to solve for question d:

p(x = 50|m = 100) =
1

200

p(x = 100|m = 100) =
1

200

p(x = 150|m = 100) =
1

450

(Do please reason on this result!)

We omit question e as an open quesion.

3.11 Bayesian analysis of the exponential distribution

Log-Likelihood for an exponential distribution is:

ln p(D|θ) = N ln θ − θ
N∑
n=1

xn

The derivative is:

∂

∂θ
ln p(D|θ) =

N

θ
−

N∑
n=1

xn

Thus in question a:

θML =
N∑N
n=1 xn

We skip other questions and state that the conjugate prior for expo-

nential distribution is Gamma distribution:

p(θ|D) ∝p(θ)p(D|θ)

=Gamma(θ|a, b)p(D|θ)

=Gamma(θ|N + a, b+
∑

xn)

A Gamma prior introduces a− 1 prior observation with the sum b.



3 GENERATIVE MODELS FOR DISCRETE DATA 25

3.12 MAP estimation for the Bernoulli with non-conjugate

priors

In question a, we have:

p(θ = 0.5|D) ∝ p(θ = 0.5)p(D|θ = 0.5) =
1

2

1+N1+N0

p(θ = 0.4|D) ∝ p(θ = 0.4)p(D|θ = 0.4) =
1

2

1

· 2

5

N1

· 3

5

N0

If the MAP estimation is θ = 0.5, i.e:

ln
p(θ = 0.5|D)

p(θ = 0.4|D)
= N1 ln

5

4
+N0 ln

5

6
> 0

Then this must be held:

N1

N0

> 0.817

Else MAP estimation gives θ = 0.4.

For question b, in case N is small, prior in question a is able to yield

a fairly good estimation (the prior is not conjugate yet close to truth). But

as N grows, it can only getting close to 0.4, while Beta-prior tends to yield

the true parameter with less error.

3.13 Posterior predictive distribution for a batch of data

with the dirichlet-multinomial model

Since we already have 3.51:

p(X = j|D,α) =
αj +Nj

α0 +N

We can easily derive:

p(D̃|D,α) =
∏
x∈D̃

p(x|D,α)

=
C∏
j=1

(
αj +Nold

j

α0 +Nold
)N

new
j

3.14 Posterior predictive for Dirichlet-multinomial

Solutions to this exercise can be obtained from conclusions drawn from

exercise 3.13.
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3.15 Setting the hyper-parameters I

We already have:
mean =

α1

α1 + α2

var =
α1α2

(α1 + α2)2(α1 + α2 + 1)

Using notation A = α1 and B = α1 + α2, we have:

m =
A

B

v =
A(B −A)

B2(B + 1)

Cancell A:

B =
m(1−m)

v
− 1

A = mB

For given figures, we calculate:

B = 130

A = 91

Hence:

α1 = 91

α2 = 39

3.16 Setting the beta hyper-parameters II

For paremeters of a Beta distribution α1 and α2 are connected through:

α2 = α1(
1

m
− 1) = f(α1)

Calculate this intergral：∫ u

l

1

B(α1, f(α1))
θα1(1− θ)f(α1) = u(α1)

Setting this intergral u(α1) → 0.95 by altering α1 through numerical

method will do.
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3.17 Marginal likelihood for beta-binomial under uniform

prior

The marginal likelihood is given by:

p(N1|N) =

∫ 1

0

p(N1, θ|N)dθ =

∫ 1

0

p(N1|θ,N)p(θ)dθ

We already have:

p(N1|θ,N) = Bin(N1|θ,N)

p(θ) = Beta(1, 1)

Thus:

p(N1|N) =

∫ 1

0

(
N

N1

)
θN1(1− θ)N−N1dθ

=

(
N

N1

)
B(N1 + 1, N −N1 + 1)

=
N !

N1!(N −N1)!

N1!(N −N1)!

(N + 1)!

=
1

N + 1

Where B is the regulizer for a Beta distribution:

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)

3.18 Bayes factor for coin tossing*

Straightforward calculation.

3.19 Irrelevant features with naive Bayes

Log-Likelihood is given by:

log p(xi|c, θ) =
W∑
w=1

xiw log
θcw

1− θcw
+

W∑
w=1

log(1− θcw)

In a succint way:

log p(xi|c, θ) = φ(xi)
Tβc
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Where:

φ(xi) = (xi, 1)T

βc = (log
θc1

1− θc1
, ...

W∑
w=1

log(1− θcw))T

For question a:

log
p(c = 1|xi)
p(c = 2|xi)

= log
p(c = 1)p(xi|c = 1)

p(c = 2)p(xi|c = 2)

= log
p(xi|c = 1)

p(xi|c = 1)

=φ(xi)
T (β1 − β2)

For question b, in a binary context:

p(c = 1|xi) =
p(c = 1)p(xi|c = 1)

p(xi)

Thus:

log
p(c = 1|xi)
p(c = 2|xi)

= log
p(c = 1)

p(c = 2)
+ φ(xi)

T (β1 − β2)

A word w will not affect this posterior measure as long as:

xiw(β1,w − β2,w) = 0

Hence:

θc=1,w = θc=2,w

So the chance that word w appears in both class of documents are

equal.

In question c, we have:

θ̂1,w = 1− 1

2 +N1

θ̂2,w = 1− 1

2 +N2

They do not equal when N1 6= N2 so the bias effect remains. However,

this effect reduces when N grows large.
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3.20 Class conditional densities for binary data

In question a, we have:

p(x|y = c) =
D∏
i=1

p(xi|y = c, x1, ..., xi−1)

The number of parameter is:

C ·
D∑
i=1

2i = C · (2D+1 − 2) = O(C · 2D)

For question b and question c, we generally think that naive mod-

els fit better when N is large, because delicate models have problems of

overfitting.

In question d, question e and question f, it is assumed that looking

up for a value according to a D-dimensional index cost O(D) time. It is easy

to calculate the fitting complexity: O(ND) for a naive model and O(N ·2D)

for a full model, and the applying complexity is O(CD) and O(C · 2D)

respectively.

For question f :

p(y|xv) ∝ p(xv|y) =
∑
xh

p(xv,xh|y)

Thus the complexity is multiplied by an extra const 2|xh|.

3.21 Mutual information for naive Bayes classifiers with

binary features

By definition:

I(X;Y ) =
∑
xj

∑
y

p(xj , y) log
p(xj , y)

p(xj)p(y)

For binary features, consider the value of xj to be zero and one, given
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πc = p(y = c), θjc = p(xj = 1|y = c), θj = p(xj = 1):

Ij =
∑
c

p(xj = 1, c) log
p(xj = 1, c)

p(xj = 1)p(c)

+
∑
c

p(xj = 0, c) log
p(xj = 0, c)

p(xj = 0)p(c)

=
∑
c

πcθjc log
θjc
θj

+ (1− θjc)πc log
1− θjc
1− θj

Which ends in 3.76.

3.22 Fitting a naive Bayesian spam filter by hand*

Straightforward calculation.
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4 Gaussian models

4.1 Uncorrelated does not imply independent

We first calculate the covariance of X and Y :

cov(X,Y ) =

∫ ∫
(X − E(X))(Y − E(Y ))p(X,Y )dXdY

=

∫ 1

−1

X(X2 − 1√
3

)dX = 0

The intergral ends in zero since we are intergrating an odd function in

range [-1,1], hence:

ρ(X,Y ) =
cov(X,Y )√

var(X)var(Y )
= 0

4.2 Uncorrelated and Gaussian does not imply indepen-

dent unless jointly Gaussian

The pdf for Y is:

p(Y = a) = 0.5 · p(X = a) + 0.5 · p(X = −a) = p(X = a)

The pdf of X is symetric with 0 as the core, so Y subject to a normal

distribution (0, 1).

For question b, we have:

cov(X,Y ) =E(XY )− E(X)− E(Y )

=EW (E(XY |W ))− 0

=0.5 · E(X2) + 0.5 · E(−X2) = 0

4.3 Correlation coefficient is between -1 and 1

The statement:

−1 ≤ ρ(X,Y ) ≤ 1

Equals:

|ρ(X,Y )| ≤ 1
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Hence we are to prove:

|cov(X,Y )|2 ≤ var(X) · var(Y )

Which can be drawn straightforwardly from Cauchy–Schwarz inequal-

ity in R2.

4.4 Correlation coefficient for linearly related variables is

1 or -1

When Y = aX + b:

E(Y ) = aE(x) + b

var(Y ) = a2var(X)

Therefore:

cov(X,Y ) =E(XY )− E(X)E(Y )

=aE(X2) + bE(X)− aE2(X)− bE(X)

=a · var(X)

We also have:

var(X)var(Y ) = a2 · var(X)

These two make:

ρ(X,Y ) =
a

|a|

4.5 Normalization constant for a multidimensional Gaus-

sian

Applying SVD on the precision matrix Σ−1 = QTΛQ, using the fact

that Q is orthonomal (|Q| = 1) and we can set µ = 0 w.l.o.g. Hence the

integral:∫
exp

{
−1

2
(Qx)TΛ(Qx)

}
dQx =

∫
exp

{
−1

2

d∑
i=1

(Qx)2
iλi

}
dQx
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Can be factorized into independent components, with each component

a zero-mean one-dimensional Gaussian. Thus the normalization constant is

given by the product of all the independent normalization constants.

d∏
i=1

√
2π

λi
= (2π)

d
2 |Σ| 12

4.6 Bivariate Gaussian

This can be solved through straightforward algebra.

4.7 Conditioning a bivariate Gaussian

Reasoning on Gaussian distribution mostly bases on a standard pro-

cedure named ”completing the square”. Which has been demonstrated

throughly in PRML Chapter 2, and the solution to this exercise can be

obtained by plugging figures into formula derived in those sections directly.

4.8 Whitening vs standardizing*

Practical by yourself.

4.9 Sensor fusion with known variances in 1d

Denate the two observed datasets by Y (1) and Y (2), with size N1, N2,

the likelihood is:

p(Y (1), Y (2)|µ) =

N1∏
n1=1

p(Y (1)
n1
|µ)

N2∏
n2=1

p(Y (2)
n2
|µ)

∝ exp
{
A · µ2 +B · µ

}
Where we have used:

A =− N1

2v1

− N2

2v2

B =
1

v1

N1∑
n1=1

Y (1)
n1

+
1

v2

N2∑
n2=1

Y (2)
n2
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Differentiate the likelihood and set it to zero, we have:

µML = − B

2A

The conjugate prior of this model must have form proporitional to

exp {A · µ2 +B · µ}, namely a normal distribution:

p(µ|a, b) ∝ exp
{
a · µ2 + b · µ

}
The posterior distribution is:

p(µ|Y ) ∝ exp
{

(A+ a) · µ2 + (B + b) · µ
}

Hence we have the MAP estimation:

µMAP = − B + b

2(A+ a)

It is noticable that the MAP converges to ML estimation when obser-

vation times grow:

µMAP → µML

The posterior distribution is another normal distribution, with:

σ2
MAP = − 1

2(A+ a)

4.10 Derivation of information form formulae for marginal-

izing and conditioning

Please refer to PRML chapter 2.

4.11 Derivation of the NIW posterior

The likelihood for a MVN is given by:

p(X|µ,Σ) = (2π)−
ND
2 |Σ|−N

2 exp

{
−1

2

N∑
n=1

(xi − µ)TΣ−1(xi − µ)

}
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According to 4.195:

N∑
n=1

(xi − µ)TΣ−1(xi − µ) =
N∑
n=1

(x̄− µ+ (xi − x̄))TΣ−1(x̄− µ+ (xi − x̄))

=N(x̄− µ)TΣ−1(x̄− µ) +
N∑
n=1

(xi − x̄)TΣ−1(xi − x̄)

=N(x̄− µ)TΣ−1(x̄− µ) + tr

{
Σ−1

N∑
n=1

(xi − x̄)(xi − x̄)T

}
=N(x̄− µ)TΣ−1(x̄− µ) + tr

{
Σ−1Sx̄

}
The conjugate prior for MVN’s parameters (µ,Σ) is Normal-inverse-

Wishart(NIW) distribution, defined by:

NIW(µ,Σ|m0, k0, v0,S0) = N (µ|m0,
1

k0

Σ) · IW(Σ|S0, v0)

=
1

Z
|Σ|−

v0+D+2
2 exp

{
−k0

2
(µ−m0)TΣ−1(µ−m0)− 1

2
tr
{

Σ−1S0

}}
Hence the posterior:

p(µ,Σ|X) ∝ |Σ|−
vX+D+2

2 exp

{
−kX

2
(µ−mX)TΣ−1(µ−mX)− 1

2
tr
{

Σ−1SX

}}
Where we have:

kX = k0 +N

vX = v0 +N

mX =
N x̄ + k0m0

kX
By comparing the exponential for |Σ|,µTΣ−1µ and µT.

Making use of ATΣ−1A = tr
{
ATΣ−1A

}
= tr

{
Σ−1AAT

}
and compar-

ing the constant term inside the exponential function:

N x̄x̄T + SX̄ + k0m0m
T
0 + S0 = kXmXmT

X + SX

Hence

SX = N x̄x̄T + SX̄ + k0m0m
T
0 + S0 − kXmXmT

X

Use the definition for mean we ends in 4.214 since:

S =
N∑
n=1

xix
T
t = SX̄ +N x̄x̄T

Hence the posterior distribution for MVN takes the form:NIW(mX, kX, vX,SX)
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4.12 BIC for Gaussians

Straightforward calculation.

4.13 Gaussian posterior credible interval

Assume a prior distribution for an 1d normal distribution:

p(µ) = N(µ|µ0, σ
2
0 = 9)

And the observed variable subjects to:

p(x) = N(x|µ, σ2 = 4)

Having observed n variables, it is vital that the probability mass of µ’s

posterior distribution is no less than 0.95 in an interval no longer than 1.

Posterior for µ is:

p(µ|D) ∝ p(µ)p(D|µ) =N(µ|µ0, σ
2
0)

n∏
i=1

N(xn|µ, σ2)

∝ exp

{
− 1

2σ2
0

(µ− µ0)2

} n∏
i=1

exp

{
− 1

2σ2
(xi − µ)2

}
= exp

{
(− 1

2σ2
0

− n

2σ2
)µ2 + ...

}
Hence the posterior variance is given by:

σ2
post =

σ2
0σ

2

σ2 + nσ2
0

Since 0.95 of probability mass for a normal distribution lies within

−1.96σ and 1.96σ, we have:

n ≥ 611

4.14 MAP estimation for 1d Gaussians

Assume the variance for this distribution σ2 is known, the mean µ

subject to a normal distribution with mean m and variance s2, similiar to

the question before, the posterior takes the form:

p(µ|X) ∝ p(µ)p(X|µ)
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The posterior is another normal distribution, by comparing the coeffi-

cient for µ2:

− 1

2s2
− N

2σ2

And that for µ:

m

s2
+

∑N
n=1 xn
σ2

We have the posterior mean and variance by the technique ”completing

the square”:

σ2
post =

s2σ2

σ2 +Ns2

µpost = (
m

s2
+

∑N
n=1 xn
σ2

) · σ2
post

Already we knew the MLE is:

µML =

∑N
n=1 xi
N

When N increases, µpost converges to µML.

Consider the variance s2. When it increases, the MAP goes to MLE,

when in decreases, ,the MAP goes to prior mean. Prior variance quantify

our confidence in the prior guess. Intuitively, the larger the prior variance,

the less we trust the prior mean.

4.15 Sequential(recursive) updating of covariance matrix

Making use of:

mn+1 =
nmn + xn+1

n+ 1

What left is straightforward algebra.

4.16 Likelihood ratio for Gaussians

Consider a classifier for two classes, the generative distribution for them

are two normal distributionsp(x|y = Ci) = N(x|µi,Σi), by Bayes formula:

log
p(y = 1|x)

p(y = 0|x)
= log

p(x|y = 1)

p(x|y = 0)
+ log

p(y = 1)

p(y = 0)

The second term is the ratio of likelihood probability.



4 GAUSSIAN MODELS 38

When we have arbitrary covariance matrix:

p(x|y = 1)

p(x|y = 0)
=

√
|Σ0|
|Σ1|

exp

{
−1

2
(x− µ1)TΣ−1

1 (x− µ1) +
1

2
(x− µ0)TΣ−1

0 (x− µ0)

}
This can not be reduced further. However, it is noticable that the

decision boundary is a quardric curve in D-dimension space.

When both covariance matrixes are given by Σ:

p(x|y = 1)

p(x|y = 0)
= exp

{
xTΣ−1(µ1 − µ0)− 1

2
tr
{

Σ−1(µ1µ
T
1 − µ0µ

T
0 )
}}

The decision boundary becomes a plate.

If we assume the covariance matrix to be a diagnoal matrix, the closed

form of answer have a similiar look, with some matrix multiplation changed

into inner product or arthimatic multiplation.

4.17 LDA/QDA on height/weight data*

Practise by youself.

4.18 Naive Bayes with mixed features

We now have: 
p(y = 1) =0.5

p(y = 2) =0.25

p(y = 3) =0.25

For question a:

p(y = 1|x1 = 0, x2 = 0) =
p(y = 1)p(x1 = 0|y = 1)p(x2 = 0|y = 1)∑3
i=1 p(y = i)p(x1 = 0|y = i)p(x2 = 0|y = i)

=
0.5 · 0.5 · 1√

2π
exp

{
− 1

2

}
0.5 · 0.5 · 1√

2π
exp

{
− 1

2

}
+ 0.25 · 0.5 · 1√

2π
exp {0}+ 0.25 · 0.5 · 1√

2π
exp

{
− 1

2

}
=0.43

Consequently:

p(y = 2|x1 = 0, x2 = 0) = 0.35
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p(y = 3|x1 = 0, x2 = 0) = 0.22

For question b, we know the component x1 provides no information

w.r.t y, hence p(y|x1) reduces to the prior of y, i.e. (0.5, 0.25, 0.25).

For question c, the answer is tantamount to that to quesition a.

Because in question a, we have cancelling the dependence on component

x1.

4.19 Decision boundary for LDA with semi tied covari-

ances

Omitting the shared parameters ends in:

p(y = 1|x) =
p(y = 1)p(x|y = 1)

p(y = 0)p(x|y = 0) + p(y = 1)p(x|y = 1)

Consider a uniform prior, this can be reduced to:

p(x|y = 1)

p(x|y = 0) + p(x|y = 1)

=
1

k
D
2 exp

{
− 1

2
(x− µ0)TΣ−1

0 (x− µ0) + 1
2
(x− µ1)TΣ−1

1 (x− µ1)
}

+ 1

=
1

k
D
2 exp

{
− 1

2
(1− 1

k
)xTΣ−1

0 x + xTu + c
}

+ 1

Where we have used:

|Σ1| = |kΣ0| = kD|Σ0|

The decision boundary is still a quardric curve. It reduces to a plate

when k = 1. When k increases, the decision boundary becomes a curve that

surrenders µ0. When k goes to infinity, the decision boundary degenerates

to a y = 0 curve, which implies that every space out of it belongs to a

normal distribution with infinite variance.

4.20 Logistic regression vs LDA/QDA

We give a qualitative answer according to the argument ”overfitting

arises from MLE, and is in a positive correlation with the complexity of the

model(namely the number of independent parameters in the model)”.
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GaussI assumes a covariance matrix propoetional to identity matrix;

GaussX has not prior assumption on covariance matrix;

LinLog assumes that different classes have the same covariance matrix;

QuadLog has not prior assumption on covariance matrix;

From the perspective of complexity:

QuadLog =GaussX > LinLog > GaussI

The accuracy of MLE follows the same order.

The argument in e is not true in general, a larger product does not

necessarily imply a larger sum.

4.21 Gaussian decision boundaries*

[Need illustration here]

4.22 QDA with 3 classes*

This follows a straightforward calculation.

4.23 Scalar QDA*

This follows a straightforward calculation.
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5 Bayesian statistics

5.1 Proof that a mixture of conjugate priors is indeed

conjugate

For 5.69 and 5.70, formly:

p(θ|D) =
∑
k

p(θ, k|D) =
∑
k

p(k|D)p(θ|k,D)

Where:

p(k|D) =
p(k,D)

p(D)
=

p(k)p(D|k)∑
k′ p(k

′)p(D|k′)

5.2 Optimal threshold on classification probability

The posterior loss expectation is given by:

ρ(ŷ|x) =
∑
y

L(ŷ, y)p(y|x) = p0L(ŷ, 0) + p1L(ŷ, 1)

=L(ŷ, 1) + p0(L(ŷ, 0)− L(ŷ, 1))

When two classficied result yield to the same loss:

p̂0 =
λ01

λ01 + λ10

Hence when p0 ≥ p̂0, we estimete ŷ = 0。

5.3 Reject option in classifiers

The posterior loss expectation is given by:

ρ(a|x) =
∑
c

L(a, c)p(c|x)

Denote the class with max posterior confidence by ĉ:

ĉ = arg max
c
{p(c|x)}

Now we have two applicable actions: a = ĉ or a = reject.

When a = ĉ, the posterior loss expectation is:

ρĉ = (1− p(ĉ|x)) · λs
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When reject, the posterior loss expectation is:

ρreject = λr

Thus the condition that we choose a = ĉ instead of reject is:

ρĉ ≥ ρreject

Or:

p(ĉ|x) ≥ 1− λr
λs

5.4 More reject options*

Straightforward calculation.

5.5 Newsvendor problem

By:

E(π|Q) = P

∫ Q

0

Df(D)dD − CQ
∫ Q

0

f(D)dD + (P − C)Q

∫ +∞

Q

f(D)dD

We have:

∂

∂Q
E(π|Q) = PQf(Q)−C

∫ Q

0

f(D)dD−CQf(Q)+(P−C)

∫ +∞

Q

f(D)dD−(P−C)Qf(Q)

Set it to zero by making use of
∫ Q

0
f(D)fD +

∫ +∞
Q

f(D)dD = 1:∫ Q∗

0

= F (Q∗) =
P − C
P

5.6 Bayes factors and ROC curves*

Practise by yourself.

5.7 Bayes model averaging helps predictive accuracy

Expand both side of 5.127 and exchange the integral sequence:

E[L(∆, pBMA)] = H(pBMA)
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We also have:

E[L(∆, pm)] = EpBMA [− log(pm)]

Substract the right side from the left side ends in:

−KL(pBMA||pm) ≤ 0

Hence the left side is always smaller than the right side.

5.8 MLE and model selection for a 2d discrete distribu-

tion

The joint distribution p(x, y|θ1, θ2) is given by:

p(x = 0, y = 0) =(1− θ1)θ2

p(x = 0, y = 1) =(1− θ1)(1− θ2)

p(x = 1, y = 0) =θ1(1− θ2)

p(x = 1, y = 1) =θ1θ2

Which can be concluded as:

p(x, y|θ1, θ2) = θx1 (1− θ1)(1−x)θ
I(x=y)
2 (1− θ2)(1−I(x=y))

The MLE is:

θML = arg max
θ

(
N∑
n=1

ln p(xn, yn|θ))

Hence:

θML = arg max
θ

(N ln(
1− θ1

1− θ2

) +Nx ln(
θ1

1− θ1

) +NI(x=y) ln(
θ2

1− θ2

))

Two parameters can be estimated independently given X and Y.

We can further rewrite the joint distribution into:

p(x, y|θ) = θx,y

Then

θML = arg max
θ

(
∑
x,y

Nx,y ln θx,y)

MLE can de done by using regularization condition.

The rest is straightforward algebra.
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5.9 Posterior median is optimal estimate under L1 loss

The posterior loss expectation is(where we have omitted D w.l.o.g):

ρ(a) =

∫
|y − a|p(y)dy

=

∫ a

−∞
(a− y)p(y)dy +

∫ +∞

a

(y − a)p(y)dy

=a ·
{∫ a

−∞
p(y)dy −

∫ +∞

a

p(y)dy

}
−
∫ a

−∞
yp(y)dy +

∫ +∞

a

yp(y)dy

Differentiate and we have:

∂

∂a
ρ(a) =

{∫ a

−∞
p(y)dy −

∫ +∞

a

p(y)

}
+ 2a · p(a)− 2a · p(a)

Set it to zero and:∫ a

−∞
p(y)dy =

∫ +∞

a

p(y) =
1

2

5.10 Decision rule for trading off FPs and FNs

Given:

LFN = cLFP

The critical condition for 5.115 is:

p(y = 1|x)

p(y = 2|x)
= c

Using:

p(y = 1|x) + p(y = 0|x) = 1

We get the threshold c
1+c

.
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6 Frequentist statistics*

The philosophy behind this chapter is out of the scope of probabilistic

ML, you should be able to find solutions to the four listed problems in any

decent textbook on mathematics statistics.

GL.
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7 Linear regression

7.1 Behavior of training set error with increasing sample

size

When the training set is small at the beginning, the trained model

is over-fitted to the current data set, so the correct rate can be relatively

high. As the training set increases, the model has to learn to adapt to more

general-purpose parameters, thus reducing the overfitting effect laterally,

resulting in lower accuracy.

As pointed out in Section 7.5.4, increasing the training set is an impor-

tant method of countering over-fitting besides adding regulizer.

7.2 Multi-output linear regression

Straightforward calculation.

7.3 Centering and ridge regression

By rewriting x into (xT, 1)T to eliminate w0, then NLL is given by:

NLL(w) = (y−Xw)T(y−Xw) + λwTw

So:
∂

∂w
NLL(w) = 2XTXw− 2XTy + 2λw

Therefore:

w = (XTX + λI)−1XTy
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7.4 MLE for σ2 for linear regression

Firstly, we give the likelihood:

p(D|w, σ2) =p(y|w, σ2,X)

=
N∏
n=1

p(yn|xn,w, σ2)

=
N∏
n=1

N(yn|wTxn, σ
2)

=
1

(2πσ2)
N
2

exp

{
− 1

2σ2

N∑
n=1

(yn −wTxn)2

}

As for σ2:

∂

∂σ2
log p(D|w, σ2) = − N

2σ2
+

1

2(σ2)2

N∑
n=1

(yn −wTxn)2

We have:

σ2
ML =

1

N

N∑
n=1

(yn −wTxn)2

7.5 MLE for the offset term in linear regression

NLL:

NLL(w, w0) ∝
N∑
n=1

(yn − w0 −wTxn)2

Differentiate with two parameters:

∂

∂w0

NLL(w, w0) ∝ −Nw0 +
N∑
n=1

(yn −wTxn)

w0,ML =
1

N

N∑
n=1

(yn −wTxn) = ȳ −wTx̄

Centering within X and y:

Xc = X− X̂

yc = y− ŷ
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The centered datasets have zero-mean, thus regression model have w0

as zero, by the same time:

wML = (XT
c Xc)

−1XT
c yc

7.6 MLE for simple linear regression*

Using the conclusion from problem 7.5. What left is straightforward

algebra.

7.7 Sufficient statistics for online linear regression

Problem a and Problem bcan be solved according to hints.

For Problem c, substituting the x in hint by y yields to the conclusion.

In d we are to prove:

(n+ 1)C(n+1)
xy = nC(n)

xy + xn+1yn+1 + nx̄(n)ȳ(n) − (n+ 1)x̄(n+1)ȳ(n+1)

Expand the Cxy in two sides and use x̄(n+1) = x̄(n) + 1
n+1

(xn+1 − x̄n).

Problem e and Problem f : practice by yourself.

7.8 Bayesian linear regression in 1d with known σ2

Problem a: practice by yourself.

For Problem b, choose the prior distribution:

p(w) ∝ N(w1|0, 1) ∝ exp

{
−1

2
w2

1

}
Reduce it into:

p(w) = N(w|w0,V0) ∝

exp

{
−1

2
V−1

0,11(w0 − w00)2 − 1

2
V−1

0,22(w1 − w01)2 −V−1
0,12(w0 − w00)(w1 − w01)

}
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Formly, we take:

w01 =0

V−1
0,22 =1

V−1
0,11 =0

V−1
0,12 =0

w00 =arbitrary

In problem c, we consider the posterior distribution for parameters:

p(w|D,σ2) = N(w|m0,V0)

N∏
n=1

N(yn|w0 + w1xn, σ
2)

The coefficients for w2
1 and w1 in the exponential are:

−1

2
− 1

2σ2

N∑
n=1

x2
n

− 1

σ2

N∑
n=1

xn(w0 − y)

Hence the posterior mean and variance are given by:

σ2
post =

σ2

σ2 +
∑N

n=1 x
2
n

E[w1|D,σ2] = σ2
post(−

1

σ2

N∑
n=1

xn(w0 − y))

It can be noticed that accumulation of samples reduces the posterior

variance.

7.9 Generative model for linear regression

For sake of convinence, we consider a centered dataset(without chang-

ing symbols):

w0 =0

µx =0

µy =0
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By covariance’s definition:

ΣXX = XTX

ΣY X = Y TX

Using the conclusion from section 4.3.1:

p(Y |X = x) = N(Y |µY |X ,ΣY |X)

Where:

µY |X = µY + ΣY XΣ−1
XX(X − µX) = Y TX(XTX)−1X = wTX

7.10 Bayesian linear regression using the g-prior

Recall ridge regression model, where we have likelihood:

p(D|w, σ2) =
N∏
n=1

N (yn|wTxn, σ
2)

The prior distribution is Gaussian-Inverse Gamma distribution:

p(w, σ2) =NIG(w, σ2|w0,V0, a0, b0)

=N (w|w0, σ
2V0)IG(σ2|a0, b0)

=
1

(2π)
D
2

1

|σ2V0|
1
2

exp

{
−1

2
(w−w0)T(σ2V0)−1(w−w0)

}
·

ba00

Γ(a0)
(σ2)−(a0+1) exp

{
− b0
σ2

}
=

ba00

(2π)
D
2 |V0|

1
2 Γ(a0)

(σ2)−(a0+ D
2 +1) · exp

{
−(w−w0)TV−1

0 (w−w0) + 2b0
2σ2

}
The posterior distribution takes the form:

p(w, σ2|D) ∝p(w, σ2)p(D|w, σ2)

∝ ba00

(2π)
D
2 |V0|

1
2 Γ(a0)

(σ2)−(a0+ D
2 +1)·

exp

{
−(w−w0)TV−1

0 (w−w0) + 2b0
2σ2

}
·

(σ2)−
N
2 · exp

{
−
∑N

n=1(yn −wTxn)2

2σ2

}
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Comparing the coefficient of σ2:

aN = a0 +
N

2

Comparing the coefficient of wTw:

V−1
N = V−1

0 +
N∑
n=1

xnx
T
n = V−1

0 + XTX

Comparing the coefficient of w:

V−1
N wN = V−1

0 w0 +

N∑
n=1

ynxn

Thus:

wN = VN (V−1
0 w0 + XTy)

Finally, comparing the constant term inside the exponential:

bN = b0 +
1

2
(wT

0 V−1
0 w0 + yTy−wT

NV−1
N wN )

We have obtained 7.70 to 7.73, which can be concluded into 7.69:

p(w, σ2|D) = NIG(w, σ2|wN ,VN , aN , bN )
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8 Logistic regression

8.1 Spam classification using logistic regression*

Practice by yourself.

8.2 Spam classification using naive Bayes*

Practice by yourself.

8.3 Gradient and Hessian of log-likelihood for logistic re-

gression

∂

∂a
σ(a) =

exp(−a)

(1 + exp(−a))2
=

1

1 + e−a
e−a

1 + e−a
= σ(a)(1− σ(a))

g(w) =
∂

∂w
NLL(w)

=
N∑
n=1

∂

∂w
[yi logµi + (1− yi) log(1− µi)]

=
N∑
n=1

yi
1

σ
σ(1− σ)− xi + (1− yi)

−1

1− σ
σ(1− σ)− xi

=
N∑
n=1

(σ(wTxi)− yi)xi

For an arbitrary non-zero vectoru(with proper shape):

uTXTSXu = (Xu)TS(Xu)

Since S is positive definite, for arbitrary non-zero v：

vTSv > 0

Assume X is a full-rank matrix, Xu is not zero, thus:

(Xu)TS(Xu) = uT(XTSX)u > 0

So XTSX is positive definite.
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8.4 Gradient and Hessian of log-likelihood for multino-

mial logistic regression

By considering one independent component each time, the complexity

in form caused by tensor product is reduced. For a specific w∗:

∂

∂w∗
NLL(W) =−

N∑
n=1

∂

∂w∗
[yn∗w

∗Txn − log(
C∑
c=1

exp(wT
c xn))]

=
N∑
n=1

−yn∗xn +
exp(w∗Txn)∑C
c=1 exp(wT

c xn)
xn

=
N∑
n=1

(µn∗ − yn∗)xn

Combine the independent solutions for all classes into one matrix yield

8.38.

On soloving for Hessian matrix, consider to take gradient w.r.t w1 and

w2:

H1,2 = ∇w2
∇w1

NLL(W) =
∂

∂w2

N∑
n=1

(µn1 − yn1)xn

When w1 and w2 are the same vector:

∂

∂w1

N∑
n=1

(µn1 − yn1)xT
n =

N∑
n=1

∂

∂w1

µn1x
T
n

=
N∑
n=1

exp(wT
1 xn)(

∑
exp)xn − exp(wT

1 xn)2xn
(
∑

exp)2
xT
n

=
N∑
n=1

µn1(1− µn1)xnx
T
n

When w1 and w2 are different:

∂

∂w2

N∑
n=1

µn1x
T
n =

N∑
n=1

− exp(wT
2 xn) exp(wT

1 xn)xn
(
∑

exp)2
xT
n

=
N∑
n=1

−µn1µn2xnx
T
n

Ends in 8.44。

The condition
∑

c ync = 1 is used from 8.34 to 8.35.
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8.5 Symmetric version of l2 regularized multinomial lo-

gistic regression

Adding a regularizer equals doing a posterior estimationg, which equals

introducing a languarge multipler for a new constraint. In this problem a

Gaussian prior distribution with a homogeneous diagonal matrix is intro-

duced, this leads to the constraint wcj = 0.

At optima, the gradient in 8.47 goes to zero. Assume that µ̂cj = ycj ,

then g(W) = 0. The extra regularization is λ
∑C

c=1 wc = 0, which equals D

independent linear constraints, with form of: for j = 1...D,
∑C

c=1 ŵcj = 0.

8.6 Elementary properties of l2 regularized logistic re-

gression

The first term of J(w)’s Hessian is positive definite(8.7), the second

term’s Hessian is positive definite as well(λ > 0). Therefore this function

has a positive definite Hessian, it has a global optimum.

The form of posterior distribution takes:

p(w|D) ∝p(D|w)p(w)

p(w) =N(w|0, σ−2I)

NLL(w) =− log p(w|D)

=− log p(D|w) +
1

2σ2
wTw + c

Therefore:

λ =
1

2σ2

The number of zero in global optimun is related to the value of λ, which

is in a negative correlationship with the prior uncertainty of w. The less

the uncertainty is, the more that w converges to zero, which ends in more

zeros in answer.

If λ = 0, which implies prior uncertainty goes to infnity. Then posterior

estimation converges to MLE. As long as there is no constraint on w, it is

possible that some component of w goes to infinity.

When λ increase, the prior uncertainty reduces, hence the over-fitting

effect reduces. Generally this implide a decrease on training-set accuracy.
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At the same time, this also increases the accuracy of model on test-set, but

it does not always happen.

8.7 Regularizing separate terms in 2d logistic regression*

Practice by yourself.
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9 Generalized linear models and the

exponential family

9.1 Conjugate prior for univariate Gaussian in exponen-

tial family form

The 1d Gaussian distribution is:

N (x|µ, σ2) =
1√

2πσ2
exp

{
− 1

2σ2
(x− µ)2

}
Rewrite it into:

p(x|µ, σ2) = exp

{
− 1

2σ2
x2 +

1

σ2
x−

{
µ2

2σ2
+

ln(2πσ2)

2

}}
Denote θ = (−λ

2
, λµ)T，A(θ) = λµ2

2
+ ln(2π)

2
− lnλ

2
，φ(x) = (x2, x)T.

Consider the likelihood with datasetD:

log p(D|θ) = exp

{
θT(

N∑
n=1

φ(xn))−N ·A(θ)

}

According to the meaning of prior distribution, we set a observation

background in order to define a prior distribution. The sufficient statistics

is the only thing matters by the form of exponential family. Assume that

we have M prior observations. The mean of them and their square are v1

and v2 respectively, then the prior distribution takes the form:

p(θ|M, v1, v2) = exp {θ1 ·Mv1 + θ2 ·Mv2 −M ·A(θ)}

= exp

{
−λ

2
Mv1 + λµMv2 −

M

2
λµ2 − M

2
ln 2π +

M

2
lnλ

}
It has three independent parameters. We are to prove that is equals

p(µ, λ) = N (µ|γ, 1
λ(2α−1)

)Gamma(λ|α, β). Expand it into exponential form

and ignore the terms independent with µ, λ:

p(µ, λ) = exp

{
(α− 1) lnλ− βλ− λ(2α− 1)

2
µ2 − λ(2α− 1)

2
γ2

}
· exp

{
λ(2α− 1)µγ +

1

2
lnλ

}
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Compare the coefficients for λµ2, λµ, λ, lnλ, we obtain:

−(2α− 1)

2
=− M

2

γ(2α− 1) =Mv2

(2α− 1)

2
γ2 − β =− 1

2
Mv1

(α− 1) +
1

2
=
M

2

Combining them ends in:

α =
M + 1

2

β =
M

2
(v2

2 + v1)

γ =v2

Thus two distributions are equal with naive change of variables’ names.

9.2 The MVN is in the exponential family

Here you can find a comprehensive solution:

https://stats.stackexchange.com/questions/231714/sufficient-statistic-for-multivariate-normal.

https://stats.stackexchange.com/questions/231714/sufficient-statistic-for-multivariate-normal
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10 Directed graphical models(Bayes nets)

...
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11 Mixture models and the EM algorithm

11.1 Student T as infinite mixture of Gaussian

The 1d Student-t distribution takes the form:

St(x|µ, σ2, v) =
Γ( v

2
+ 1

2
)

Γ(v
2
)

(
1

πvσ2
)

1
2 (1 +

(x− µ)2

vσ2
)−

v+1
2

Consider the left side of 11.61:∫
N(x|µ, σ

2

z
)Gamma(z|v

2
,
v

2
)dz

=

∫ √
z√

2πσ2
exp

{
− z

2σ2
(x− µ)2

} ( v
2
)

v
2

Γ(v
2
)
z

v
2−1 exp

{
−v

2
z
}

dz

=
1√

2πσ2

( v
2
)

v
2

Γ( v
2
)

∫
z

v−1
2 exp

{
−(
v

2
+

(x− µ)2

2σ2
)z

}
dz

The integrated function is the terms related to z in Gamma distribution

Gamma(z|v+1
2
, (x−µ)2

2σ2 + v
2
), which gives to the normalized term’s inverse.∫

z
v−1
2 exp

{
−(
v

2
+

(x− µ)2

σ2
)z

}
dz = Γ(

v + 1

2
)(

(x− µ)2

2σ2
+
v

2
)−

v+1
2

Plug in can derive 11.61.

11.2 EM for mixture of Gaussians

We are to optimize:

Q(θ, θold) =Ep(z|D,θold)[
N∑
n=1

log(xn, zn|θ)]

=
N∑
n=1

E[log
K∏
k=1

(πkp(xn|zk, θ))znk ]

=
N∑
n=1

K∑
k=1

rnk log(πkp(xn|zk, θ))

Where:

rnk = p(znk = 1|xn, θold)
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When the emission distribution p(x|z, θ) is Gaussian, consider the terms

involveµk in Q(θ, θold) first:

N∑
n=1

rnk log p(xn|zk, θ) =
N∑
n=1

rnk(−
1

2
)(xn − µk)TΣ−1(xn − µk) + C

Setting the derivative to zero results in:

N∑
n=1

rnk(µk − xn) = 0

And we obtain 11.31:

µk =

∑N
n=1 rnkxn∑N
n=1 rnk

For terms involve Σk in Q(θ, θold):

N∑
n=1

rnk log p(xn|zk, θ) =
N∑
n=1

rnk(−
1

2
)(log |Σk|+(xn−µk)TΣ−1(xn−µk))+C

Using the same way as in 4.1.3.1:

L(Σ−1 = Λ) = (
N∑
n=1

rnk) log |Λ| − tr

{
(
N∑
n=1

rnk(xn − µk)(xn − µk)T)Λ

}
The balance condition is:

(
N∑
n=1

rnk)Λ
−T =

N∑
n=1

rnk(xn − µk)(xn − µk)T

Obtain 11.32:

Σk =

∑N
n=1 rnk(xn − µk)(xn − µk)T∑N

n=1 rnk

11.3 EM for mixtures of Bernoullis

During the MLE for mixtures of Bernoullis, consider(D = 2 marks the

number of potential elements):

∂

∂µkj

N∑
n=1

K∑
k=1

rnk log p(xn|θ, k) =
N∑
n=1

rnk
∂

∂µkj
(
D∑
i

xni logµki)

=
N∑
n=1

rnkxnj
1

µkj
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Introduce a multipler to constrain
∑

j µkj = 1, then condition for the

derivative to be zero is:

µkj =

∑N
n=1 rnkxnj

λ

Summer over all j:

1 =
D∑
j=1

µkj =
1

λ

D∑
j=1

N∑
n=1

rnkxnj =
1

λ

N∑
n=1

rnk

D∑
j=1

xnj =

∑N
n=1 rnk
λ

Results in:

λ =
N∑
n=1

rnk

Hence 11.116。

Introduce a prior:

p(µk0) ∝ µα−1
k0 µβ−1

k1

The zero-derivative condition becomes:

µk0 =

∑N
n=1 rnkxn0 + α− 1

λ

µk1 =

∑N
n=1 rnkxn1 + β − 1

λ
And:

1 = µk0 + µk1 =
1

λ
(

N∑
n=1

rnk(xn0 + xn1) + α+ β − 2)

λ =
N∑
n=1

rnk + α+ β − 2

Hence 11.117。

11.4 EM for mixture of Student distributions

The log-likelihood for complete data set is:

lc(x, z) = log(N (x|µ, Σ

z
)Gamma(z|λ

2
,
λ

2
))

=− D

2
log(2π)− 1

2
log |Σ|+ D

2
log(z)

− z

2
(x− µ)TΣ−1(x− µ)

+
v

2
log(

v

2
)− log(Γ(

v

2
)) + (

v

2
− 1) log(z)− v

2
z
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Sum the terms involving v:

lv(x, z) =
v

2
log(

v

2
)− log(Γ(

v

2
)) +

v

2
(log(z)− z)

The likelihood w.r.t v on complete data set is:

Lv =
vN

2
log(

v

2
)−N log(Γ(

v

2
)) +

v

2

N∑
n=1

(log(zn)− zn)

Setting derivative to zero gives:

∇Γ(v
2
)

Γ(v
2
)
− 1− log(

v

2
) =

∑N
n=1(log(zn)− zn)

N

For µ and Σ:

lµ,Σ(x, z) = −1

2
log |Σ| − z

2
(x− µ)TΣ−1(x− µ)

Lµ,Σ =
N

2
log |Σ| − 1

2

N∑
n=1

zn(xn − µ)TΣ−1(xn − µ)

Hence equals the MLE used for MVN.

11.5 Gradient descent for fitting GMM

From the given information:

p(x|θ) =
∑
k

πkN(x|µk,Σk)

l(θ) =
N∑
n=1

log p(xn|θ)

Deriavte w.r.t µk:

∂

∂µk
l(θ) =

N∑
n=1

πkN(xn|µk,Σk)∇µk

{
− 1

2
(xn − µk)TΣ−1

k (xn − µk)
}∑K

k′=1 πk′N(xn|µk′ ,Σk′)

=
N∑
n=1

rnkΣ
−1
k (xn − µk)

w.r.t πk:

∂

∂πk
l(θ) =

N∑
n=1

N(xn|µk,Σk)∑K
k′=1 πk′N(xn|µk′ ,Σk′)

=
1

πk

N∑
n=1

rnk
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Using Languarge multipler ends in:

πk =

∑N
n=1 rnk
λ

Sum over k and normalize:

πk =

∑N
n=1 rnk
N

For Σk:

∂

∂Σk

l(θ) =
N∑
n=1

πk∇Σk
N (xn|µk,Σk)∑K

k′=1 πk′N (xn|µk′ ,Σk′)

Where:

∇Σk
N (x|µk,Σk) =

1

(2π)
D
2

1

|Σk|
1
2

exp

{
−1

2
(x− µk)TΣ−1

k (x− µk)
}
∇Σk

·
{
∇Σk

(−1

2
(x− µk)TΣ−1

k (x− µk))− Σ−1
k ∇Σk

|Σk|
}

=N (x|µk,Σk)∇(logN (x|µk,Σk))

Thus we have:

Σk =

∑N
n=1 rnk(xn − µk)(xn − µk)T∑N

n=1 rnk

11.6 EM for a finite scale mixture of Gaussians

J and K are independent, using Bayes’ rules(we have omitted θ in

condition w.l.o.g):

p(Jn = j,Kn = k|xn) =
p(Jn = j,Kn = k, xn)

p(xn)

=
p(Jn = j)p(Kn = k)p(xn|Jn = j,Kn = k)∑

Jn,Kn
p(Jn,Kn, xn)

=
pjqkN(xn|µj , σ2

k)∑m
Jn=1

∑l
Kn=1 pJnqKn

N (xn|µJn , σ2
Kn

)
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Derive the form of auxiliary fucntion Q(θnew, θold):

Q(θnew, θold) =Eθold
N∑
n=1

log p(xn, Jn,Kn|θnew)

=
N∑
n=1

E[log(
m∏
j=1

l∏
k=1

p(xn, Jn,Kn|θnew)I(Jn=j,Kn=k))]

=
N∑
n=1

m∑
j=1

l∑
k=1

E(I(Jn = j,Kn = k))(log pj + log qk + logN (xn|µj , σ2
k))

=
∑
n,j,k

rnjk log pj +
∑
n,j,k

rnjk log qk +
∑
njk

rnjk logN (xn|µj , σ2
k)

We are to optimize parameters p, q, µ, σ2. It is noticealbe that p and q

can be optimized independently. Now fix σ2 and optimize µ:

∂

∂µj

∑
n,j′,k

rnj′kN (xn|µj , σ2
k) =

∑
n,k

rnjk∇µk
N (xn|µj , σ2

k)

=
∑
n,k

rnjkN (xn|µj , σ2
k)
xn − µj
σ2
k

And we ends in:

µj =

∑
n,k rnjkN (xn|µj , σ2

k)
xn

σ2
k∑

n,k rnjkN (xn|µj , σ2
k)

1
σ2
k

11.7 Manual calculation of the M step for a GMM*

Practise by yourself.

11.8 Moments of a mixture of Gaussians

For the expectation of mixture distribution:

E(x) =

∫
x
∑
k

πkN (x|µk,Σk)dx

=
∑
k

πk

{∫
xN (x|µk,Σk)dx

}
=
∑
k

πkµk
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Using cov(x) = E(xxT)− E(x)E(x)T, we have:

E(xxT) =

∫
xxT

∑
k

πkN (x|µk,Σk)dx

=
∑
k

πk

∫
xxTN (x|µk,Σk)dx

Where:∫
xxTN (x|µk,Σk)dx =EN (µk,Σk)(xxT)

=covN (µk,Σk)(x) + EN (µk,Σk)(x)EN (µk,Σk)(x)T

=Σk + µkµ
T
k

Therefore:

cov(x) =
∑
k

πk(Σk + µkµ
T
k )− E(x)E(x)T

11.9 K-means clustering by hand*

Practise by yourself.

11.10 Deriving the K-means cost function

For every term sum over k, apply 11.134 onto the inner and outer sum

process: ∑
i:zi=k

∑
i′:zi′=k

(xi − xi′)2 =
∑
i:zi=k

nks
2 + nk(x̄k − xi)2

=n2
ks

2 + nk(nks
2)

=2nksk

The right side of 11.131 equals to sum over k:

nk
∑
i:zi=k

(xi − x̄k)2 = nk(nks
2 + n(x̂n − x̂n))

Thus 11.131.
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11.11 Visible mixtures of Gaussians are in exponential

family

Encode latent variable with hot-pot code, zc = I(x is generated from

the c distribution), then(omit θ in condition w.l.o.g):

p(z) =
C∏
c=1

πzcc

p(x|z) =
C∏
c=1

(
1√

2πσ2
c

exp

{
− 1

2σ2
c

(x− µc)2

}
)zc

The log for joint distribution is:

log p(x, z) = log
C∏
c=1

(
πc√
2πσ2

c

exp

{
− 1

2σ2
c

(x− µc)2

}
)zc

=
C∑
c=1

zc(log πc −
1

2
log 2πσ2

c −
1

2σ2
c

(x− µc)2)

Which is a sum of some inner products, hence an exponential family.The

sufficient statics are linear combinations of z, zx and zx2.

11.12 EM for robust linear regression with a Student t

likelihood

Using the complete data likelihood w.r.t µ derived in 11.4.5:

LN (µ) =
1

2σ2

N∑
n=1

zn(yn −wTxn)2

Set the deriavte to zero:

wT

N∑
n=1

znxnx
T
n =

N∑
n=1

znynx
T
n

This means:

wT = (
N∑
n=1

znynx
T
n )(

N∑
n=1

znxnx
T
n )−1
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11.13 EM for EB estimation of Gaussian shrinkage model

For every j, 5.90 takes different forms(this equals E-step):

p(x̄i|µ, t2, σ2) = N (x̄j |µ, t2 + σ2
j )

Integrate out θj , the marginal likelihood is given by:

log
D∏
j=1

N(x̄j |µ, t2 + σ2
j ) = (−1

2
)
D∑
j=1

log 2π(t2 + σ2
j ) +

1

t2 + σ2
j

(x̄j − µ)2

Then we optimize respectively(this equals M-step):

µ =

∑D
j=1

x̄j

t2+σ2
j∑D

j=1
1

t2+σ2
j

t2 satisfies:
D∑
j=1

(t2 + σ2)− (x̄j − µ)2

(t2 + σ2
j )

2

11.14 EM for censored linear regression*

Unsolved.

11.15 Posterior mean and variance of a truncated Gaus-

sian

We denote A = ci−µi

σ
, for mean:

E[zi|zi ≥ ci] = µi + σE[εi|εi ≥ A]

And we have:

E[εi|εi =
1

p(εi ≥ A)

∫ +∞

A

εiN (εi|0, 1)dx =
φ(A)

1− Φ(A)
= H(A)

In the last step we use 11.141 and 11.139, plug it up:

E[zi|zi ≥ ci] = µi + σH(A)

Now to calculate the expectation for square term:

E[z2
i |zi ≥ ci] = µ2

i + 2µiσE[εi|εi ≥ A] + σ2E[ε2i |εi ≥ A]
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To address E[ε2i |εi ≥ A], expand the hint from question:

d

dw
(wN(w|0, 1)) = N (w|0, 1)− w2N (w|0, 1)

We have:∫ c

b

w2N (w|0, 1)dw = Φ(c)− Φ(b)− c · N (c|0, 1) + b · N (b|0, 1)

E[ε2i |εi ≥ A] =
1

p(εi ≥ A)

∫ +∞

A

w2N (w|0, 1)dw =
1− Φ(A) +Aφ(A)

1− Φ(A)

Plug it into the conclusion drawn from question a:

E[z2
i |zi ≥ ci] = µ2

i + 2µiσH(A) + σ2 1− Φ(A) +Aφ(A)

1− Φ(A)

= µ2
i + σ2 +H(A)(σci + σµi)
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12 Latent linear models

12.1 M-step for FA

Review the EM for FA(Fator-Analysis) first. Basically, we have(centralize

X to cancel µ w.l.o.g):

p(z) =N (z|0, I)

p(x|z) =N (x|Wz,Ψ)

And:

p(z|x) =N (z|m,Σ)

Σ =(I + WTΨ−1W)−1

m =ΣWTΨ−1xn

Denote xn’s latent variable as zn. The log-likelihood for complete data

set{x, z} is:

log
N∏
n=1

p(xn, zn) =
N∑
n=1

log p(zn) + log p(xn|zn)

With prior log p(z) that can be omitted with parameter 0 and I, hence:

Q(θ, θold) =Eθold [
N∑
n=1

log p(xn|zn, θ)]

=E[
N∑
n=1

c− 1

2
log |Ψ| − 1

2
(xn −Wzn)TΨ−1(xn −Wzn)]

=C − N

2
log |Ψ| − 1

2

N∑
n=1

E[(xn −Wzn)TΨ−1(xn −Wzn)]

=C − N

2
log |Ψ| − 1

2

N∑
n=1

xT
nΨ−1xn −

1

2

N∑
n=1

E[zT
nWTΨ−1Wzn] +

N∑
n=1

xT
nΨ−1WE[zn]

=C − N

2
log |Ψ| − 1

2

N∑
n=1

xT
nΨ−1xn −

1

2

N∑
n=1

tr
{
WTΨ−1WE[znz

T
n ]
}

+
N∑
n=1

xT
nΨ−1WE[zn]
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As long as p(z|x, θold) = N (z|m,Σ), we have:

E[zn|xn] =ΣWTΨ−1x

E[znz
T
n |xn] =cov(zn|xn) + E[zn|xn]E[zn|xn]T

=Σ + (ΣWTΨ−1x)(ΣWTΨ−1x)T

From now on, the x and θold are omitted from conditions when calcu-

lating expectation.

Optimize w.r.t W:

∂

∂W
Q =

N∑
n=1

Ψ−1xnE[zn]T −
N∑
n=1

Ψ−1WE[znz
T
n ]

Set it to zero:

W = (
N∑
n=1

xnE[zn]T)(
N∑
n=1

E[znz
T
n ])−1

Optimize w.r.t Ψ−1:

∂

∂Ψ−1
Q =

N

2
Ψ− 1

2

N∑
n=1

xnx
T
n −

1

2

N∑
n=1

WE[znz
T
n ]WT +

N∑
n=1

WE[zn]xn

Plug in the expression of W:

Ψ =
1

N
(
N∑
n=1

xnx
T
n −WE[zn]xT

n )

Assume Ψ to be a diagnal matrix:

Ψ =
1

N
diag(

N∑
n=1

xnx
T
n −WE[zn]xT

n )

This solution comes from ”The EM Algorithm for Mixtures of Factor

Analyzers, Zoubin Gharamani, Geoffrey E.Hinton, 1996”, where the EM for

mixtures of FA is given as well.

12.2 MAP estimation for the FA model

Assume prior p(W) and p(Ψ). Compare with the question before, the

M-step needs to be moderated:

∂

∂W
(Q+ log p(W)) = 0

∂

∂Ψ
(Q+ log p(Ψ)) = 0
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12.3 Heuristic for assessing applicability of PCA*

Need pictures for illustration here!

12.4 Deriving the second principal component

For:

J(v2, z2) =
1

N

N∑
n=1

(xn − zn1v1 − zn2v2)T(xn − zn1v1 − zn2v2)

Consider the derivative w.r.t one component of z2:

∂

∂zm2

J =
1

N
(2zm2v

T
2 v2 − 2vT

2 (xm − zm1v1)) = 0

Using vT
2 v2 = 1 and vT

2 v1 = 0 yields to:

zm2 = vT
2 xm

Since C is symmitric, use the constrain on v1 and v2. We apply SVD

onto C first:

C = OTΛO

Where:

Λ = diag {λ1, λ2, ...}

Are C’s eigenvalues from the largest to the smallest.

OT = {u1,u2, ...}

Are eigenvectors, that are vertical to each other uT
i uj = I(i = h).

Withu1 = v1.

Under constrains vT
2 v2 = 1 and vT

2 v1 = 0, we are to minimize:

(Ov2)TΛ(Ov2)

Notice Ov2 means a transform on v2, with its length unchanged. And

(Ov2)TΛ(Ov2) measures the sum of the vector’s components’ square timed

by Λ’s eigenvalues. Hence the optimum is reached with all length converges

to the component associated to the largest eigenvalue, which means:

uT
i v2 = I(i = 2)
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Therefore:

v2 = u2

12.5 Deriving the residual error for PCA

||xn −
K∑
j=1

znjvj ||2 =(xn −
K∑
j=1

znjvj)
T(xn −

K∑
j=1

znjvj)

=xT
nxn +

N∑
j=1

z2
nj − 2xTn

N∑
j=1

znjvj

Use vT
i vj = I(i = j), znj = xT

nvj . We ends in the conclusion of a.

||xn −
K∑
j=1

znjvj ||2 = xT
nxn − 2

K∑
j=1

vT
j xnx

T
nvj

Plug in vT
j Cvj = λj and sum over n can draw the conclusion in b.

Plug K = d into the conclusion in b, we have:

JK=d =
1

N

N∑
n=1

xT
nxn −

d∑
j=1

λj = 0

1

N

N∑
n=1

xT
nxn −

d∑
j=1

λj = 0

In general cases:

JK =
d∑
j=1

λj −
K∑
j=1

λj =
K∑

j=d+1

λj

12.6 Derivation of Fisher’s linear discriminant*

Straightforward algebra.

（need reference）

12.7 PCA via successive deflation*

This problem involves the same technique used in solving 12.4, hence

omitted.
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12.8 Latent semantic indexing*

Practice by yourself.

12.9 Imputation in a FA model*

wtfxv？

wtfxh？

12.10 Efficiently evaluating the PPCA density

With:

p(z) =N (z|0, I)

p(x|z) =N (x|Wz, σ2I)

Use the conclusion from chapter 4.

N (x) = N (x|0, σ2I + WWT)

Deriavtion for MLE in 12.2.4 can be found in ”Probabilistic Principal

Component Analysis,Michael E.Tipping, Christopher M.Bishop,1999”.

Plug in the MLE, thence the covariance matrix(D ∗D)’s inverse can be

computed:

(σ2I + WWT)−1 = σ−2I− σ−2W(
1

σ−2
WTW + σ−2I)−1WTσ−2

Which involves only inversing a L ∗ L matrix.

12.11 PPCA vs FA*

Practice by youself.
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13 Sparse linear models

13.1 Partial derivative of the RSS

Define:

RSS(w) =
N∑
n=1

(yn −wTxn)2

Straightforwardly:

∂

∂wj
RSS(w) =

N∑
n=1

2(yn −wTxn)(−xnj)

=−
N∑
n=1

2(xnjyn − xnj
D∑
i=1

wixni)

=−
N∑
n=1

2(xnjyn − xnj
D∑
i 6=j

wixni − x2
njwj)

With wj ’s coefficient:

aj = 2
N∑
n=1

x2
nj

Other irrelevent terms can be absorbed into:

cj = 2
N∑
n=1

xnj(yn −wT
−jxn,−j)

In the end:

wj =
cj
aj

13.2 Derivation of M-step for EB for linear regression

We give the EM for Automatic Relevance Determination(ARD). For

linear regression scene:

p(y|x,w, β) =N (y|Xw, β−1)

p(w) =N (w|0,A−1)

A =diag {α}
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In E-step, we are to estimate expectation of w. Using linear Gaussian

relationship:

p(w|y, α, β) =N (µ,Σ)

Σ−1 =A + βXTX

µ =Σ(βXTy)

Then:

Eα,β[w] =µ

Eα,β[wwT] =Σ + µµT

For auxiliay function:

Q(α, β, αold, βold) =Eαold,βold [log p(y,w|α, β)]

=E[log p(y|w, β) + log p(w|)]

=
1

2
E[N log β − β(y−Xw)T(y−Xw) +

∑
j

logαj −wTA−1w]

In E-step, we need E[w] and E[wwT], which have been computed:

Introduce a prior for component in α and β:

p(α, β) =
∏
j

Gamma(αj |a+ 1, b) ·Gamma(β|c+ 1, d)

Hence the posterior auxiliary function is:

Q′ = Q+ log p(α, β) = Q+
∑
j

(a logαj − bαj) + (c log β − dβ)

In M-step, optimize w.r.t αi:

∂

∂αi
Q′ =

1

2αi
− E[w2

i ]

2
+

a

αi
− b

Set it to zero:

αi =
1 + 2a

E[w2
i ]− b

Optimize w.r.t β:

∂

∂β
Q′ =

N

2β
− E[||y−Xw||2] +

c

β
− d

End in:

β =
N + 2c

E[||y−Xw||2] + 2d

Expand the expectation ends in 13.168.
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13.3 Derivation of fixed point updates for EB for linear

regression*

Unsolved.

13.4 Marginal likelihood for linear regression*

Straightforward algebra.

13.5 Reducing elastic net to lasso

Expand both sides of 13.196, the right side:

J1(cw) =(y− cXw)T(y− cXw) + c2λ2w
Tw + λ1|w|1

=yTy− c2wTXTXw− 2yTXw + c2λ2w
Tw + λ1|w|1

The left side:

J2(w) =

(
y− cXw

−c
√
λ2w

)T(
y− cXw

−c
√
λ2w

)
+ cλ1|w|1

=(y− cXw)T(y− cXw) + c2λ2w
Tw + cλ1|w|1

=yTy + c2wTXTXw− 2yTXw + c2λ2w
Tw + cλ1|w|1

Hence 13.196 and 13.195 are equal.

This shows elastic net regularization, which pick a regularing term as

a linear combination of l1 andl0 equals a lasso one.

13.6 Shrinkage in linear regression

For ordinary least square:

RSS(w) = (y−Xw)T(y−Xw)

Using XTX = I:

RSS(w) = c+ wTw− 2yTXw

Take the derivative:

∂

∂wk
RSS(w) = 2wk − 2

N∑
n=1

ynxnk
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We have:

ŵOLS
k =

N∑
n=1

ynxnk

In ridge regression:

RSS(w) = (y−Xw)T(y−Xw) + λwTw

Take the derivative:

(2 + 2λ)wk = 2
N∑
n=1

ynxnk

Thus

ŵridge
k =

∑N
n=1 ynxnk
1 + λ

Solution for lasso regression using subderivative is exploited in 13.3.2,

which concludes in 13.63:

ŵlasso
k = sign(ŵOLS

k )(|ŵOLS
k | − λ

2
)+

Observe picture 13.24, it is easy to address the black line as OLS, gray

one Ridge and dotted one lasso. And λ1 = λ2 = 1. It is noticeable that

ridge cause a shrinkage to horizontal axis while lasso cause a sharp shrinkage

to zero under certain threshold.

13.7 Prior for the Bernoulli rate parameter in the spike

and slab model

p(γ|α1, α2) =
D∏
d=1

p(γd|α1, α2)

Integrate out πd:

p(γd|α1, α2) =
1

B(α1, α2)

∫
p(γd|πd)p(πd|α1, α2)dπd

=
1

B(α1, α2)

∫
πγdd (1− πd)(1−γd)πα1−1

d (1− πd)α2−1dπd

=
1

B(α1, α2)

∫
πα1+γd−1
d (1− πd)α2+1−γd−1dπd

=
B(α1 + γd, α2 + 1− γd)

B(α1, α2)
=

Γ(α1 + α2)

Γ(α1)Γ(α2)

Γ(α1 + γd)Γ(α2 + 1− γd)
Γ(α1 + α2 + 1)
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Therefore(N1 marks the number of 1 in γ):

p(γ|α1, α2) =
Γ(α1 + α2)N

Γ(α1)NΓ(α2)N
Γ(α1 + 1)N1Γ(α2 + 1)N−N1

Γ(α1 + α2 + 1)N

=
(α1 + 1)N1(α2 + 1)N−N1

(α1 + α2 + 1)N

And:

log p(γ|α1, α2) = N log
α2 + 1

α1 + α2 + 1
+N1 log

α1 + 1

α2 + 1

13.8 Deriving E step for GSM prior

Laplace(wj |0,
1

γ
) =

∫
N(wj |0, τ2

j )Ga(τ2
j |1,

γ2

2
)dτ2

j

Take Laplace transform/generating transform to both sides:

To calculate:

E[
1

τ2
j

|wj ] =

∫
1

τ2
j

p(τ2
j |wj)dτ2

j =

∫
1

τ2
j

p(wj |τ2
j )p(τ2

j )

p(wj)
dτ2
j

=
1

p(wj)

∫
1

τ2
j

N(wj |0, τ2
j )p(τ2

j )dτ2
j

According to 13.200, it reduces to:

1

p(wj)

−1

|wj |
d

dwj

∫
N(wj |0, τ2

j )p(τ2
j )dτ2

j

Because:
d

dw
log p(w) =

1

p(w)

d

dw
p(w)

This gives 13.197:

1

p(wj)

−1

|wj |
d

dwj
p(wj) =

1

|wj |
d

dwj
− log p(wj)

！此题存疑，Hint 1和Hint 2中可能均有印刷错误。

13.9 EM for sparse probit regression with Laplace prior

Straightforward Probit regression involves no latent variable. Intro-

ducing Laplace prior for linear factor w results in its lasso version. Since
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Laplace distribution is a continuous mixture of Gaussian, a latent variable

τ2 with the same dimension as w is introduced. The PGM for Probit re-

gression looks like:

γ → τ2 → w→ y← X

The joint distribution is:

p(γ, τ2,w,y|X) = p(γ)
D∏
d=1

p(τ2
d |γ)

D∏
d=1

p(wd|τ2
d )

N∏
n=1

Φ(wTxn)yn(1−Φ(wTxn))1−yn

For concise, we set γ as constant, according to 13.86:

p(τ2|γ) =Gamma(τ2
d |1,

γ2

2
)

p(wd|τ2
d ) =N (wd|0, τ2

d )

Hence:

p(τ2,w,y|X, γ) ∝ exp

{
−1

2

D∑
d=1

(γ2τ2
d +

w2
d

τ2
d

)

}
·
D∏
d=1

1

τd

·
N∏
n=1

Φ(wTxn)yn(1− Φ(wTxn))1−yn

In Q(θnew, θold), we take expectation of θold. We have assumed w as

parameter and τ2 as latent variable, thus:

Q(w,wold) = Ewold [log p(y, τ2|w)]

Now extract terms involve w from log p(τ2,w,y):

log p(y, τ2|w) = c− 1

2

D∑
d=1

w2
d

τ2
d

+
N∑
n=1

yn log Φ(wTxn) + (1−yn)(1−Φ(wTxn))

Thus we only need to calculate one expectation in E-step:

E[
1

τ2
d

|wold]

Which can be done as in 13.4.4.3, because Probit and linear regression

share the same PGM up to this stage.

The M-step is the same as Gaussian-prior Probit regression hence omit-

ted.
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13.10 GSM representation of group lasso*

Follow the hints and straightforward algebra.

13.11 Projected gradient descent for l1 regularized least

squares

Generally, we take gradient on w and optimize. When there are con-

strains on w that could be broken by gradient descent, the increment has

to be moderated to fit in the constrains.

To calculate:

min
w
{NLL(w) + λ||w||1}

Consider under a linear regression context:

NLL(w) =
1

2
||y−Xw||22

For λ||w||1 can not be differentiate, we need a non-trivial solution, it

is suggest:

w = u− v

ui = (xi)+ = max {0, xi}

vi = (−xi)+ = max {0,−xi}

With u ≥ 0,v ≥ 0, then:

||w||1 = 1T
nu + 1T

nv

The original problem is changed to:

min
w

{
1

2
||y−X(u− v)||22 + λ1T

nu + λ1T
nv

}
s.t.u ≥ 0,v ≥ 0

Denote:

z =

(
u

v

)
Rewrite the original target:

min
z

{
f(z) = cTz +

1

2
zTAz

}
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s.t.z ≥ 0

Where:

c =

(
λ1n − yX

λ1n + yX

)

A =

(
XTX −XTX

−XTX XTX

)
The gradient is given by:

∇f(z) = c + Az

For ordinary gradient descent:

zk+1 = zk − α∇f(zk)

For projected case, take gk:

gki = min
{
zki , α∇f(zk)i

}
During iteration:

zk+1 = zk − gk

The original paper suggest more delicate method to moderate the learn-

ing rate, refer to ”Gradient Projection for Sparse Reconstruction: Applica-

tion to Compressed Sensing and Other Inverse Problems, Mario A.T.Figueiredo”.

13.12 Subderivative of the hinge loss function

if(θ < 1)∂f(θ) = {−1}

if(θ = 1)∂f(θ) = [−1, 0]

if(θ > 1)∂f(θ) = {0}

13.13 Lower bounds to convex functions

Refer to ”Rigorous Affine Lower Bound Functions for Multivariate

Polynomials and Their Use in Global Optimisation”.
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14 Kernels

****
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15 Gaussian processes

15.1 Reproducing property

We denote κ(x1,x) by f(x) and κ(x2,x) by g(x). From definition:

f(x) =
∞∑
i=1

fiφ(x)

κ(x1,x) =
∞∑
i=1

λiφi(x1)φi(x)

Since x can be chosen arbitrarily, we have the properties hold(the one

for g is obtained similarly):

fi = λiφi(x1)

gi = λiφi(x2)

Therefore:

< κ(x1, .), κ(x2, .) >= < f, g >

=
∞∑
i=1

figi
λi

=
∞∑
i=1

λiφi(x1)φi(x2)

=κ(x1,x2)
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16 Adaptive basis function models*

16.1 Nonlinear regression for inverse dynamics

Practise by yourself.
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17 Markov and hidden Markov models

17.1 Derivation of Q function for HMM

Firstly, we estimate the distribution of z1:T w.r.t θold, for auxiliay func-

tion, we are to calculate the log-likelihood w.r.t θ and z1:T .

Q(θ, θold) =Ep(z1:T |x1:T ,θold)[log p(z1:T ,x1:T |θ)]

=Ep[log

{
N∏
i=1

{
p(zi,1|π)

Ti∏
t=2

p(zi,t|zi,t−1,A)

Ti∏
t=1

p(xi,t|zi,t,B)

}}
]

=Ep[
N∑
i=1

K∑
k=1

I[zi,1 = k] log πk +
N∑
i=1

Ti∑
t=2

K∑
j=1

K∑
k=1

I[zi,t = k, zi,t−1 = j] log A(j, k)

+
N∑
i=1

Ti∑
t=1

K∑
k=1

I[zi,t = k] log p(xi,t|zi,t = k,B)]

Further we have 17.98, 17.99, 17.100, using the definition of expectation

yields to 17.97.

17.2 Two filter approach to smoothing in HMMs

For rt(i) = p(zt = i|xt+1:T ), we have:

p(zt = i|xt+1:T ) =
∑
j

p(zt = i, zt+1 = j|xt+1:T )

=
∑
j

p(zt+1 = j|xt+1:T )p(zt = i|zt+1 = j, xt+1:T )

=
∑
j

p(zt+1 = j|xt+1:T )p(zt = i|zt+1 = j)

=
∑
j

p(zt+1 = j|xt+1:T )Ψ−(j, i)

Where Ψ− denotes the transform matrix in an inverse sense, we further

have:

p(zt+1 = j|xt+1:T ) =p(zt+1 = j|xt+1, xt+2:T )

∝p(zt+1 = j, xt+1, xt+2:T )

=p(xt+2:T )p(zt+1 = j|xt+2:T )p(xt+1|zt+1 = j, xt+2:T )

∝rt+1(j)φt+1(j)
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Therefore we can calculate rt(i) recursively:

rt(i) ∝
∑
j

rt+1(j)φt+1(j)Ψ−(j, i)

And initial element p(zT ) is given by
∏
T (i).

To rewrite γt(i) in terms of new factors:

γt(i) ∝p(zt = i|x1:T )

∝p(zt = i, x1:T )

=p(zt = i)p(x1:T |zt = i)

=p(zt = i)p(x1:t|zt = i)p(xt+1:T |zt = i, x1:t)

=p(zt = i)p(x1:t|zt = i)p(xt+1:T |zt = i)

=
1

p(zt = i)
p(x1:t, zt = i)p(xt+1:T , zt = i)

∝ 1

p(zt = i)
p(zt = i|x1:t)p(zt = i|xt+1:T )

=
αt(i) · rt(i)∏

t(i)

17.3 EM for HMMs with mixture of Gaussian observa-

tions

Using mixture of Gaussians as the emission distribution does not the

evaluation of γ and ε, hence the E-step does not change compared to the

one in exercise 17.1.

As long as A and B are estimated independently, we are now focus on

estimating B = (π, µ,Σ) during M-step, the involved target function is:

K∑
k=1

N∑
i=1

Ti∑
t=1

γi,t(k) log p(xi,t|B)

Since the parameters are independent w.r.t k, we delve into a case

where k is given. We also denote the iteration through i = 1 to N and t = 1

to Ti by n = 1 to T =
∑N

i=1 Ti, now the log-likelihood takes the form:

T∑
n=1

γn(k) log p(xn|πk, µk,Σk)
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It can be seen as a weighted form of log-likelihood for a mixture of

Gaussian, assume the mixture contains C(it should be Ck, but this notation

causes no contradiction as long as we take k for granted) Gaussians. We are

to apply another EM procedure during the M-step for this HMM. Denote

the latent variable corresponding to xn by hn,k. Estimate the distribution

of p(hn,k|zn, πk, µk,Σk) is tantamount to the E-step used in handling tradi-

tional mixture of Gaussians. Denote the expectation of hn,k’s components

by γ′c,n(k).

Now applying the M-step of mixture of Gaussians, recall that auxiliay

takes the form:

T∑
n=1

γn(k)
C∑
c=1

γ′c,n(k) {log πk,c + logN (xn|µk,c,Σk,c)}

Hence this HMM reweighted a traditional mixture of Gaussians, with

the weight changed from γ′c,n(k) into γn(k) · γ′c,n(k). The rest estimation

is trivially the application of M-step in mixture of Gaussians using new

weights.

17.4 EM for HMMs with tied mixtures

Recall the conclusion from exercise 17.3, the last M-step inside M-step

takes the form:

K∑
k=1

T∑
n=1

C∑
c=1

γc,n(k) {log πk,c + logN (xn|µc,Σc)}

Where we accordingly update the meaning of γ, and we also remove k

from the footnotes of µ and Σ given the conditions in this exercise.

It is easy to notice that this target function again takes the form of

M-step target for a traditional mixture of Gaussians. Taking independent

k and update πk gives the learning process of K mixing weights. Sum out

k and C independent Gaussian parameters can be updated.
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18 State space models

18.1 Derivation of EM for LG-SSM

We directly work on the auxiliary function:

Q(θ, θold) =Ep(Z|Y,θold)[log
N∏
n=1

p(zn,1:Tn
, yn,1:Tn

|θ)]

=E[

N∑
n=1

log p(zn,1)

Tn∏
i=2

p(zn,i|zn,i−1)

Tn∏
i=1

p(yn,i|zn,i)]

=E[
N∑
n=1

logN (zn,1|µ0,Σ0) +

Tn∑
i=2

N(zn,i|Aizn,i−1 +Biui, Qi)

+

Tn∑
i=1

N (yn,i|Cizn,i +Diui, Ri)]

=E[N log
1

|Σ0|
1
2

+

{
−1

2

N∑
n=1

(zn,1 − µ0)TΣ−1
0 (zn,1 − µ0)

}

+
T∑
i=2

Ni log
1

|Qi|
1
2

+

{
−1

2

Ni∑
n=1

(zn,i −Aizn,i−1 −Biui)TQ−1
i (zn,i −Aizn,i−1 −Biui)

}
]

+
T∑
i=2

Ni log
1

|Ri|
1
2

+

{
−1

2

Ni∑
n=1

(yn,i − Cizn,i −Diui)
TR−1

i (yn,i − Cizn,i −Diui)

}
]

When exchanging the order of sum over data, we have T = maxn {Tn}
and Ni denotes the number of data set with size no more than i.

To estimate µ0, take the related terms:

E[−1

2

N∑
n=1

(zn,1 − µ0)Σ−1
0 (zn,1 − µ0)]

Take derivative w.r.t µ0:

E[
N∑
n=1

−1

2
µT

0 Σ−1
0 µ0 + zn,1Σ−1

0 µ0]
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Setting it to zero yields:

µ0 =
1

N
E[zn,1]

It is obvious that such estimation is similar to that for MVN with xn

replaced by E[zn,1]. This similarity works for other parameters as well. For

example, estimate Σ0 is tantamount to estimate the covariance of MVN

with data terms replaced.

Such analysis works for Qi and Ri as well. To estimate coefficient

matrix, we consider Ai firstly. The related term is:

E[

Ni∑
n=1

{
zT
n,iA

T
i Q
−1
i Aizn,i − 2zT

n,i−1A
T
i Q
−1
i (zn,i −Biui)

}
]

Setting derivative to zero yields a solution similar to that for µ0, the

same analysis can be applied for Bi, Ci, Di as well.

18.2 Seasonal LG-SSM model in standard form

From Fig.18.6(a), we have:

A =


1 1 0 0T

S−1

0 1 0 0T
S−1

0 0 1 0T
S−1

0S−1 0S−1 I 0S−1



Q =


Qa 0T

S+1

0 Qb 0T
S

0 0 Q 0T
S−1

0(S−1)∗(S+2)


C =

(
1 1 1 0T

S−1

)
Where we use 0n to denote a colomn vector of 0 with length n, and

0m∗n to denote a m ∗ n matrix of 0.
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19 Undirected graphical models(Markov

random fields)

19.1 Derivation of the log partition function

According to the definition:

Z(θ) =
∑
y

∏
c∈C

ψc(yc|θc)

It is straightforward to give:

∂ logZ(θ)

∂θc′
=

∂

∂θc′
log
∑
y

∏
c∈C

ψc(yc|θc)

=
1

Z(θ)

∑
y

∂

∂θc′

∏
c∈C

ψc(yc|θc)

=
1

Z(θ)

∑
y

∏
c∈C,c6=c′

ψc(yc|θc)
∂

∂θc′
ψc′(yc′ |θc′)

=
1

Z(θ)

∑
y

∏
c∈C,c6=c′

ψc(yc|θc)
∂

∂θc′
exp

{
θT
c′φc′(yc′)

}
=

1

Z(θ)

∑
y

∏
c∈C

ψc(yc|θc)φc′(yc′)

=
∑
y

φc′(yc′)
1

Z(θ)

∏
c∈C

ψc(yc|θ)

=
∑
y

φc′(yc′)p(y|θ)

=E[φc′(yc′)|θ]

19.2 CI properties of Gaussian graphical models

Problem a:

We have:

Σ =


0.75 0.5 0.25

0.5 1.0 0.5

0.25 0.5 0.75
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And:

Λ = Σ−1 =


2 −1 0

−1 2 −1

0 −1 2


Thus we have independency: X1 ⊥ X2|X3. This introduces a MRF

like:

X1 X3 X2

Problem b: The inverse of Σ contains no zero element, hence no con-

ditional independency. Therefore there have to be edges between any two

vertexes.

X1 X3

X2

This model also cancels the marginal independency X1 ⊥ X3. But it

is possible to model this set of properties by Bayesian network with two

directed edges X1 → X2 and X3 → X2.

Problem c: Consider the terms inside the exponential:

−1

2

{
x2

1 + (x2 − x1)2 + (x3 − x2
2)
}

It is easy to see the precision matrix and covariance matrix take:

Λ =


2 −1 0

−1 2 −1

0 −1 1

 ,Σ =


1 1 1

1 2 2

1 2 3


Problem d: The only independency is X1 ⊥ X3|X2:

X1 X2 X3
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19.3 Independencies in Gaussian graphical models

Problem a and b:

This PGM implies X1 ⊥ X3|X2, hence we are looking for a precision

matrix with Λ1,3 = 0, thus C and D meet the condition. On the other hand,

(A−1)1,3 = (B−1)1,3 = 0. So A and B are candidates for covariance matrix.

Problem c and d:

This PGM tells that X1 ⊥ X3. Hence C and D can be covariance

matrix, A and B can be precision matrix.

The only possible PGM is:

X1 X2 X3

Problem e:

The answer can be derived from the conclusion of marginal Gaussian

directly, A is true while B not.

19.4 Cost of training MRFs and CRFs

The answer are generally:

O(r(Nc+ 1))

and

O(r(Nc+N))
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19.5 Full conditional in an Ising model

Straightforwardly(we have omitted θ from condition w.l.o.g):

p(xk = 1|x−k) =
p(xk = 1,x−k)

p(x−k)

=
p(xk = 1,x−k)

p(xk = 0,x−k) + p(xk = 1,x−k)

=
1

1 + p(xk=0,x−k)

p(xk=1,x−k)

=
1

1 +
exp(hk·0)

∏
<k,i> exp(Jk,i·0)

exp(hk·1)
∏

<k,i> exp(Jk,i·xi)

=σ(hk +
n∑

i=1,i6=k

Jk,ixi)

When using denotation x = {0, 1}, the full conditional becomes:

p(xk = 1|x−k)σ(2 · (hk +
n∑

i=1,i6=k

Jk,ixi))
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20 Exact inference for graphical models

20.1 Variable elimination*

Where tf is the figure?!

20.2 Gaussian times Gaussian is Gaussian

We have:

N (x|µ1, λ
−1
1 )×N (x|µ2, λ

−1
2 )

=

√
λ1λ2

2π
exp

{
−λ1

2
(x− µ1)2 − λ2

2
(x− µ2)2

}
=

√
λ1λ2

2π
exp

{
−λ1 + λ2

2
x2 + (λ1µ1 + λ2µ2)x− λ1µ

2
1 + λ2µ

2
2

2

}
By completing the square:

exp

{
−λ1 + λ2

2
x2 + (λ1µ1 + λ2µ2)x− λ1µ

2
1 + λ2µ

2
2

2

}
=c · exp−λ

2
(x− µ)2

Where:

λ = λ1 + λ2

µ = λ−1(λ1µ1 + λ2µ2)

The constant factor c can be obtained by computing the constant terms

inside the exponential.

20.3 Message passing on a tree

Problem a:

It is easy to see after variable elimination:

p(X2 = 50) =
∑
G1

∑
G2

p(G1)p(G2|G1)p(X2 = 50|G2)

p(G1 = 1, X2 = 50) = p(G1)
∑
G2

p(G2|G1 = 1)p(X2 = 50|G2)
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Thus:

p(G1 = 1|X2 = 50) =
0.45 + 0.05 · exp(−5)

0.5 + 0.5 · exp(−5)
≈ 0.9

Problem b(here X denotes X2 or X3):

p(G1 = 1|X2 = 50, X3 = 50)

=
p(G1 = 1, X2 = 50, X3 = 50)

p(X2 = 50, X3 = 50)

=
p(G1 = 1)p(X2|G1 = 1)p(X3|G1 = 1)

p(G1 = 0)p(X2|G1 = 0)p(X3|G1 = 0) + p(G1 = 1)p(X2|G1 = 1)p(X3|G1 = 1)

=
p(X = 50|G1 = 1)2

p(X = 50|G1 = 0)2 + p(X = 50|G1 = 1)2

≈ 0.92

0.12 + 0.92
≈ 0.99

Extra evidence makes the belief in G1 = 1 firmer.

Problem c:

The answer to problem c is symmetric to that to problem b, p(G1 =

0|X2 = 60, X3 = 60) ≈ 0.99.

Problem d:

Using the same pattern of analysis from Problem b, we have:

p(G1 = 1|X2 = 50, X3 = 60)

=
p(X = 50|G1 = 1)p(X = 60|G1 = 1)

p(X = 50|G1 = 0)p(X = 60|G1 = 0) + p(X = 50|G1 = 1)p(X = 60|G1 = 1)

Notice we have:

p(X = 50|G1 = 1) = p(X = 60|G1 = 0)

p(X = 50|G1 = 0) = p(X = 60|G1 = 1)

Hence:

P (G1 = 1|X2 = 50, X3 = 60) = 0.5

In this case, X2 and X3 have equal strength as evidence and their

effects achieve a balance so they provide not enough information to distort

the prior knowledge.
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20.4 Inference in 2D lattice MRFs

Please refer to PGM:principals and techniques 11.4.1.
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21 Variational inference

21.1 Laplace approximation to p(µ, log σ|D) for a univari-

ate Gaussian

Laplace approximation equals representing f(µ, l) = log p(µ, l = log σ|D)

with second-order Taylor expansion. We have:

log p(µ, l|D) = log p(µ, l,D)− log p(D)

= log p(µ, l) + log p(D|µ, l) + c

= log p(D|µ, l) + c

=
N∑
n=1

log
1√

2πσ2
exp

{
− 1

2σ2
(yn − µ)2

}
+ c

=−N log σ +
N∑
n=1

− 1

2σ2
(yn − µ)2 + c

=−N · l +
1

2

1

exp {2 · l}

N∑
n=1

(yn − µ)2 + c

Thus we derive:

∂ log p(µ, l|D)

∂µ
=

1

2

1

exp {2 · l}

N∑
n=1

2 · (yn − µ)

=
N

σ2
· (ȳ − µ)

∂ log p(µ, l|D)

∂l
=−N +

1

2

N∑
n=1

(yn − µ)2 · (−2) · 1

exp {2 · l}

=−N +
1

σ2

N∑
n=1

(yn − µ)2

∂2 log p(µ, l|D)

∂µ2
=− N

σ2

∂2 log p(µ, l|D)

∂l2
=− 2

σ2

N∑
n=1

(yn − µ)2

∂2 log p(µ, l|D)

∂µ∂l
=N · (ȳ − µ) · (−2) · 1

σ2
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For approximation, p(µ, l) ≈ N(µ,Σ) with:

Σ =

(
∂2 log p(µ,l|D)

∂µ2

∂2 log p(µ,l|D)
∂l2

∂2 log p(µ,l|D)
∂l2

∂2 log p(µ,l|D)
∂µ∂l

)−1

µ = Σ

(
∂ log p(µ,l|D)

∂µ
∂ log p(µ,l|D)

∂l

)

21.2 Laplace approximation to normal-gamma

This is the same with exercise 21.1 when the prior is uniformative. We

formally substitute:

N∑
n=1

(yn − µ)2 =
N∑
n=1

((yn − ȳ)− (µ− ȳ))2

=
N∑
n=1

(yn − ȳ)2 +
N∑
n=1

(µ− ȳ)2 + 2(µ− ȳ) ·
N∑
n=1

(yn − ȳ)

=Ns2 +N(µ− ȳ)2

Where s2 = 1
N

∑N
n=1(yn − ȳ)2

Conclusions in all problems a, b and c are included in the previous

solution.

21.3 Variational lower bound for VB for univariate Gaus-

sian

What left in section 21.5.1.6 is the derivation for 21.86 to 21.91. We

omit the derivation for entropy for Gaussian and moments, which can be

found in any information theory textbook. Now we derive the E[lnx|x ∼
Gamma(a, b)], which can therefore yields to the entropy for a Gamma dis-

tribution.

We know that Gamma distribution is an exponential family distribu-

tion:

Gamma(x|a, b) =
ba

Γ(a)
xa−1 exp {−b · x}

∝ exp {−b · x+ (a− 1) lnx}

= exp
{
φ(x)Tθ

}
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The sufficient statistics is φ(x) = (x, lnx)T and natural parameter is

given by θ = (−b, a − 1)T . Thus Gamma distribution can be seen as the

maximum entropy distribution under constraints on x and lnx.

The culumant function is given by:

A(θ) = logZ(θ)

= log
Γ(a)

ba

= log Γ(a)− a log b

The expectation of sufficient statistics is given by the derivative of

cumulant function, therefore:

E[lnx] =
∂A

∂(a− 1)
=

Γ′(a)

Γ(a)
− log b

According to defintion ψ(a) = Γ′(a)
Γ(a)

:

E[lnx] = ψ(a)− log b

The rest derivations are completed or trivial.

21.4 Variational lower bound for VB for GMMs

The lower bound is given by:

Eq[log
p(θ,D)

q(θ)
] =Eq[log p(θ,D)]− Eq[q(θ)]

=Eq[log p(D|θ)] + Eq[log p(θ)] + Eq[log q(θ)]

=E[log p(x|z, µ,Λ, π)] + E[log p(z, µ,Λ, π)]

− E[log q(z, µ,Λ, π)]

=E[log p(x|z, µ,Λ, π)] + E[log p(z|π)] + E[log p(π)] + E[log p(µ,Λ)]

+ E[log q(z)] + E[log q(π)] + E[log q(µ,Λ)]

We are now showing 21.209 to 21.215.

For 21.209:

E[log p(x|z, µ,Λ)] =Eq(z)q(µ,Λ)[log p(x|z, µ,Λ)]

=
∑
n

∑
k

Eq(z)q(µ,Λ)[−
D

2
log 2π +

1

2
log |Λk| −

1

2
(xn − µk)TΛk(xn − µk)]
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Using 21.132 and converting summing by average x̄k yields to solution.

For 21.210:

E[log p(z|π)] =Eq(z)q(π)[log p(z|π)]

=Eq(z)q(π)[log
N∏
n=1

K∏
k=1

πznk

k ]

=
N∑
n=1

K∑
k=1

Eq(z)q(π)[znk log πk]

=
N∑
n=1

K∑
k=1

Eq(z)[znk]Eq(π)[log πk]

=
N∑
n=1

K∑
k=1

rnk log π̄k

For 21.211:

E[log p(π)] =Eq(π)[log p(π)]

=Eq(π)[log(C ·
K∏
k=1

πα0−1
k )]

= lnC + (α0 − 1)
K∑
k=1

log π̄k

For 21.212:

E[log p(µ,Λ)] =Eq(µ,Λ)[log p(µ,Λ)]

=Eq(µ,Λ)[log
K∏
k=1

Wi(Λk|L0, v0) · N (µk|m0, (β0Λk)
−1]

=
K∑
k=1

Eq(µ,Λ)[logC +
1

2
(v0 −D − 1) log |Λk| −

1

2
tr
{

ΛkL
−1
0

}
− D

2
log 2π − 1

2
log |β0Λk| −

1

2
(µk −m0)T(β0Λk)(µk −m0)]

Using 21.131 to expand the expected value of the quadratic form and

using the fact that the mean of a Wi distribution is vkLk and we are done.
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For 21.213:

E[log q(z)] =Eq(z)[log q(z)]

=Eq(z)[
∑
i

∑
k

zik log rik]

=
∑
i

∑
k

Eq(z)[zik] log rik

=
∑
i

∑
k

rik log rik

For 21.214:

E[log q(π)] =Eq(π)[log q(π)]

=Eq(π)[logC +
K∑
k=1

(αk − 1) log πk]

= logC +
∑
k

(αk − 1) log π̄k

For 21.215:

E[log q(µ,Λ)] =Eq(µ,Λ)[log q(µ,Λ)]

=
∑
k

Eq(µ,Λ)[log q(Λk)−
D

2
log 2π +

1

2
log |βkΛk|

− 1

2
(µk −mk)

T(βkΛk)(µk −mk)]

Using 21.132 to expand the quadratic form to give E[(µk−mk)
T(βkΛk)(µk−

mk)] = D

21.5 Derivation of E[log πk]

under a Dirichlet distribution Dirichlet distribution is an exponential

family distribution, we have:

φ(π) = (log π1, log π2, ... log πK)

θ = α

The cumulant function is:

A(α) = logB(α) =
K∑
i=1

log Γ(αi)− log Γ(
K∑
i=1

αi)
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And:

E[log πk] =
∂A(α)

∂αk
=

Γ′(αk)

Γ(αk)
−

Γ′(
∑K

i=1 αk)

Γ(
∑K

i=1 αk)
= ψ(αk)− ψ(

K∑
i=1

αi)

Take exponential on both sides:

exp(E[log πk]) = exp(ψ(αk)− ψ(
K∑
i=1

αk)) =
exp(αk)

exp(
∑K

i=1 αi)

21.6 Alternative derivation of the mean field updates for

the Ising model

This is no different than applying the procedure in section 21.3.1 before

derivating updates, hence omitted.

21.7 Forwards vs reverse KL divergence

We have:

KL(p(x, y)||q(x, y)) =Ep(x,y)[log
p(x, y)

q(x, y)
]

=
∑
x,y

p(x, y) log p(x, y)−
∑
x,y

p(x, y) log q(x)−
∑
x,y

p(x, y) log q(y)

=
∑
x,y

p(x, y) log p(x, y)−
∑
x

(
∑
y

p(x, y)) log q(x)−
∑

y(
∑
x

p(x, y)) log q(q)

=H(p(x, y))−H(p(x))−H(p(y)) + KL(p(x)||q(x)) + KL(p(y)||q(y))

=constant +KL(p(x)||q(x)) + KL(p(y)||q(y))

Thus the optimal approximation is q(x) = p(x) and q(y) = p(y).

We skip the practical part.

21.8 Derivation of the structured mean field updates for

FHMM

According to the conclusion from mean-field varitional methods, we

have:

E(xm) = Eq/m[E(p̄(xm))]
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Thus:

−
T∑
t=1

K∑
k=1

xt,m,k ε̃t,m,k =
1

2
E[

T∑
t=1

(yt−
M∑
l 6=m

Wlxt,m)TΣ−1(yt−
M∑
l 6=m

Wlxt,m)]+C

Comparing the coefficient of xt,m,k (i.e. setting xt,m,k to 1) ends in:

ε̃t,m,k = WT
mΣ−1(yt −

∑
l 6=m

WlE[xt,l])−
1

2
(WT

mΣ−1Wm)k,k

Write into matrix form yields to 21.62.

21.9 Variational EM for binary FA with sigmoid link

Refer to ”Probabilistic Visualisation of High-Dimensional Binary Data,

Tipping, 1998”.

21.10 VB for binary FA with probit link

The major difference in using probit link is the uncontinuous likelihood

caused by p(yi = 1|zi) = I(zi > 0). In the context of hiding X, we assume

Gaussian prior on X, W and Z. The approximation takes the form:

q(X,Z,W) =
L∏
l=1

q(wl)
N∏
i=1

q(xi)q(zi)

It is a mean-field approximation, hence in an algorithm similari to EM,

we are to update the distribution of X, Z and W stepwise.

For variable X, we have:

log q(xi) =Eq(zi)q(w)[log p(xi,w, zi, yi)]

=Eq(zi)q(w)[log p(xi) + log p(w) + log p(zi|wi,w) + log p(yi|zi)]

Given the likelihood form, for i corresponding to yi = 1, q(zi) have

to be a truncated one, i.e. we only consider the expectations in the form

E[z|z > µ] and E[z2|z > µ].

log q(xi) = − 1
2
xT
i Λ1xi − 1

2
E[z2]− 1

2
xT
i E[wwT]xi + E[z]E[w]Txi

Where Λ1 is the covariance of xi’s prior distribution, E[wwT ] can be

calculated given the Gaussian form of q(w), and truncated expectations E[z]
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and E[z2] can be obtained from solutions to exercise 11.15. It is obvious

that q(xi) is a Gaussian.

The update for w is similar to that for xi as long as they play symmetric

roles in likelihood. The only difference is we have to sum over i when

updating w.

At last we update zi:

log q(zi) = Eq(xi)q(w)[log p(zi|xi,w) + log p(yi|zi)]

Inside the expectation we have:

−1

2
z2
i + E[w]TE[x]zi + c

Therefore q(zi) again takes a Gaussian form.
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