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Abstract. Considering numerous types of data, this paper discusses application
of PCA to exponential family distributions. Reviewing the probabilistic basis of
PCA, we propose a model using Laplace approximation, which was widely
used in classification context, Laplace exponential family PCA (LePCA). The
proposed approach provides a more probabilistic solution compared with
numerous models before. Standard EM algorithm can be applied to this model,
while only a degraded form of EM is applicable on previous exponential PCA
models. LePCA absorbs probabilistic PCA, as well as the traditional PCA as its
specialization by taking the Gaussian assumption for granted.
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1 Introduction

Principal component analysis (PCA) [1] is a widely used algorithm for dimension-
reduction. Intuitively, it looks for a low-dimensional subspace and represents the
original data by their projection to a set of orthonormal basis in it. The projected data
have a large variance, i.e. a relatively large amount of information is saved [2]. From
a probabilistic perspective, we assume that there is a low-dimensional latent variable
z subject to identity Gaussian. We further assume that one data term x is sampled
from a linear Gaussian relationship. When the coefficient for covariance matrix is set
to zero, the model degrades into a deterministic algorithm equal to the traditional
PCA, the general latent variable approach is known as probabilistic principal
component analysis (PPCA) [3]. PPCA is a special form of factor analysis, with
traditional PCA as its specialization. It is the Gaussian linear hypothesis that gives
rise to measurement of information by variance. But this hypothesis that data items
are subject to Gaussian distribution is sometimes inappropriate. One generali-zation is
replacing the Gaussian distribution with the more general exponential family
distributions [4], which is known as exponential PCA (EPCA) [5].

Like all probabilistic models, PPCA needs to cope with the over-fitting caused by
maximum likelihood estimation. It is naturally to introduce a-posteriori estimation of
parameters on PPCA. Similarly, EPCA can also perform MAP as well. However, the
prior distribution of the general exponential distribution is not normally distributed,
which deprives the posterior estimation of a closed form. Hence the optimization of
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parameters for EPCA is usually done through an iterative approach. It is common to
relate this procedure of optimization to expectation-maximum (EM) algorithm as long
as they both aim at maximizing the likelihood for a model with latent variables.

Another problem with traditional PCA as well as PPCA is the dimensionality of
latent variables. The dimensionality to which data are reduced to generally needs to
be given beforehand, however, it is more reasonable to learn this parameter from data.
Works have been done to solve the problem by applying Automatic Relevance
Determination (ARD) [6] procedure on PPCA as well as EPCA, but in the second
case, the conjugate nature of parameter subspace is lost.

In this paper, we concentrate on giving a closed form for PCA extended to
exponential family distributions by making use of Laplace approximation as in [7],
chapter 8.4.1. Laplace exponential family PCA (LePCA). We will show how
parameters can be estimated by using straightforward EM. The relationship between
our method and other ones for parameter estimation in exponential PCA before is
showed as well. We further illustrate that it is natural and foresightful to assume a
Gaussian hypothesis for PPCA instead of other emission distributions. It is also
showed that using Laplace approximation enables this model to generalize factor
analysis (FA) [8] by introducing a variable Hessian.

The rest of paper is organized as follows: Section two reviews the generalization
process of PCA. Section three introduces the proposed Laplace exponential family
PCA. Experiment and illustration example are given in Section four. Section five
concludes the paper.

2 Related Work

2.1 Probabilistic PCA

The probabilistic perspective of principal component analysis was introduced in
[3]. In PPCA, there is a latent variable z with fewer dimensionality dq  .Where
d denotes the dimensionality of data x . After transformation, it forms the mean for
the observed variables. The probabilistic graphical model for PPCA, together with its
Bayesian version [9] is given in Fig.1, N denotes the size of training set.

Fig. 1. PGM for PPCA and Bayesian PPCA



For ordinary PPCA, we use point estimation on μ , 2 and W , where we have
assumed a linear Gaussian relationship:
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Thanks to the linear Gaussian relationship, the parameter’s update has a closed
form given in [3].

PPCA provides a probabilistic approach of dimension reduction from d to q by
identifying the most appropriate linear transformation introduced by loading matrix
W . Original data x is encoded by its correlated latent variable, which subjects to

)|(p xz . This posterior distribution has a closed form as long as the correlation are
Gaussian.

One problem of PPCA is that q needs to be determined beforehand. In [9], an
algorithm that can learn an appropriate q given data was proposed by introducing an
ARD prior on loading matrix W . A sparse solution can be obtained by learning
hyper-parameter α .

2.2 Generalization of PCA to Exponential Family

The distribution of x introduced by PPCA is a Gaussian. However, there are
numerous data with a non-Gaussian distribution. In order to applying the technique of
PCA onto other data, a generalization of PCA to exponential family distributions was
proposed [5]. It uses the same idea of looking for a subspace that reduces the
dimension while preserves information to its best.

Under a Gaussian context, fitting the likelihood is equal to minimizing a loss
function in a quadratic form, hence a least-square target. For general exponential
family, the loss function is given by the Bregman distance. Thanks to the property of
exponential family, this optimization task is convex with respect to two independent
parameters. To estimate parameters, [5] gave an iterative solution during
which W and z are optimized alternately. EPCA’ s posterior form was studied by [10],
where a MAP estimation for parameters are drawn through hybrid Monte Carlo given
prior distribution for W and z .The graphical model for EPCA is shown in Fig.2.



Fig. 2. PGM for EPCA and its Bayesian version, BXPCA

And we have:
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EPCA is different from PPCA in their ways of identifying conditional probability
),|(p Wzx . PPCA uses a Gaussian distribution while EPCA uses a context-related

exponential family distribution denoted by ep .

2.3 Simple Exponential Family PCA (SePCA)

As PPCA, EPCA faces the problem of finding the best dimensionality for latent
variable, namely the number of principal components. One of the solutions has been
proposed in [11], with a graphical model as Fig.3.

Fig. 3. PGM for SePCA

By using an ARD prior on W as in Bayesian PPCA, dimensionality is driven to its
optimum by learning hyper-parameter α . It is noticeable that the PGM for SePCA is
the same to that of Bayesian PPCA as shown in Fig.1, after removing μ and 2 .

On parameter estimation, SePCA uses an iterative method similar to that used in
EPCA. It was interpreted in [11] that this iterative optimization on two set of
parameters alternatively can be seen as a degenerated EM.



3 Proposed Model

In this section, we begin with reviewing some basic properties of exponential
family distributions, followed by introducing the proposed model. By sticking to a
PGM language, we list the theoretical improvements and some comparisons. On
elaborating the method for parameter estimation, we elucidate the feature of proposed
model further.
3.1 Exponential Family

An exponential family distribution takes the form:
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Where we work on the sufficient statistics. The distribution’s cumulant function
)(θG is always a convex one. And )(xh is a scaling factor which often set to one. It is

straightforward to recognize that a lot of widely-used distributions belongs to
exponential family. Typical examples are Gaussian, Bernoulli, multinoulli, etc.

One significance for exponential family is that it is the only family with conjugate
prior distributions, which can simplify the estimation as well as increase the interpret-
ability.

The conjugate prior for an exponential family distribution takes the form:
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From the perspective of observation, this prior is tantamount to taking prior data
terms with their sufficient statistics sum up to λ .

3.2 Graphical Model

The structure of Laplace exponential family PCA is defined by Fig.4.

Fig. 4. PGM for LePCA

The conjugation on basis for the subspace is preserved by introducing conjugate
prior on W . However, as long as the dimensionality needs to be learned, an ARD



prior is applied on Z , denoting the collection of all latent variables. Unlike SePCA,
the conjugate relationship saves more space for tuning parameters in a more intuitive
and interpretive way. As it is pointed out in [12], the difference in status between W
and Z is imposed. Traditional BPPCA obtains a sparse result by treating Z as latent
variables and integrating out W . It is also applicable to integrate out Z , and yield a
closed form of solution at length. In exponential family context, integrating out a
ARD priorZ preserves sparsity and conjugation at the same time.

Formally, the prior for basis takes the form:
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Wherew is one column of loading matrix W . As for latent variables:
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By setting 01 
q , the biased term is taken off, so the emission distribution is:
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Since this is a probabilistic model with latent variables, we naturally resort to EM
on parameter estimation. In the E-step, estimate the conditional distribution on z :
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The difficulty within this approach is that on the denominator, latent variable z can
not be integrated out conveniently due to the variety in form of cumulant function G
and the fraction takes an irregular form. However, it is still possible to estimate
parameters with proper approximation. In previous works as EPCA or SePCA, an
iterative and alternative approach is used. We are now to give another solution using
approximation and indicate that the previous approaches are variants of the one we
proposed.

3.3 On Parameter Estimation: Laplace Approximation

Interpretation between iterative optimization and EM within exponential PCA is
given in [11]. It is also straightforward to elaborate the similarity by using point
estimation to optimize joint likelihood instead of calculating the complete posterior
distribution. Thus E-step is reduced to:
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Where it is assumed that the posterior distribution is peaked at its maximum. Using
the literature of Bregman distance[13]:
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 gF . Once the context-related distribution is

determined, these functions can be calculated analytically. This optimization of z is
reduced into a standard convex optimization.

To estimate W , applying the M-step:
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The cancellation of integral is due to the fact that the posterior distribution has
been approximated as a Dirac function. The degenerated M-step is again a convex
optimization.

To use the full EM algorithm, it is feasible to use Laplace approximation, which
was firstly used in classification context to handle non-Gaussian likelihood, hence fit
our issue. This equals using the second-order Taylor expansion of )()( Wzz Gf  to
approximate the exact culumant function:
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Where we denote the Hessian matrix for G at 0z by H and absorb constant term
into C and coefficient of linear term into α .



Laplace approximation addresses the marginal likelihood which is independence
of z , and we can now approximate the full posterior of (t)z as ),(N (t)(t) Σμ , where the

Hessian is computed as 1)(t
0

 zz for better approximation:
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In M-step, we optimize W with respect to the expectation of log-likelihood under
posterior distribution obtained before can be processed using Laplace approximation
again:
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Which can be solved analytically since it only composed of the expectation of first
and second order moment of a Gaussian variable.

If the Hessian is a constant, calculation can be reduced sharply. A trivial case is
Gaussian distribution with cumulant function 2/)( 2 G , hence yields a constant
Hessian. For general exponential family, the Hessian needs to be computed for times
during iterations. Addressing the similarity between our model and FA, FA assumes

),|(p zWx to be normally distributed ),(N ΨWz . Applying Laplace approximation

on the emission distribution results in a variable (t)Ψ (notice the similarity between
equation(1) and the E-step for FA, and sufficient statistics we used through does not
equal the one for Gaussian in factor analysis). The approximation should only be used
during estimation so the overall distribution of data remains general.

LePCA’ s parameter estimation can be concluded as follow:

Table 1. EM algorithm for LePCA

 Initialization: give )0(�z and )0(W according to prior distribution; 0t ;
 Iteration: while not converge:

─ Compute )t(|)(2)(
zWzH Gt  ;

─ E-step: Compute )(p )1( tz w.r.t )(tH , )(tW using equation (1) and (2), then

calculate expectation for z and Tzz ;
─ M-step: Optimize )1( tW w.r.t the expectations calculated before; similar to M-

step for FA;
─ 1 tt� ;



3.4 On Parameter Estimation: Evidence Framework

To learn the dimension of principal components q , we take W as granted and
integrate out z to learn the hyper-parameter α . In PPCA, z can be integrated out
easily using Gaussian properties. The difficulty within exponential family model is
the same as the one arises in E-step. Hence it can be handled by using Laplace
approximation as well. For latent variable z , we collect all i th component in it from
N data into iZ , using the evidence framework as linear regression, we have the re-
estimation formula as in [9] or [14], Chapter 3.5:
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Where H is the Hessian for ),|(plog WXZ i with respect to iZ , which consists of
constant terms thanks to the Laplace approximation. In practice, it is possible to
ignore the second term in numerator to simplify the re-estimation further. By evidence
framework, the dimension with less support from the data will increase related
component in α quickly. This ends in an decrease in the prior variance for that
dimension. Since we have the prior to be a zero-mean Gaussian, this is tantamount to
drive all components in that dimension to zero.

4 Experiment and Illustration

On synthetic data set used in [10] we test SePCA. The data set consists of 120N
data that subject to Bernoulli distribution with 16d . The “genuine” data is divided
into three groups with consistent content. Each component in each data item is further
flipped with probability 0.1 to form the training set. The data set is illustrated in
Fig.5., where vertical and horizontal axes represent dimension and data respectively.

(a) (b)

Fig. 5. Synthetic data set, the prototype (a) and the one added with noise(b)



Bernoulli distribution belongs to the exponential family. As for this data set, its
cumlant function takes a concise form:
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Where  denotes sigmoid function. With this fact the gradient and Hessian(which
is diagonal) can be easily computed.

Three typical phases in iteration are selected and demonstrated in Fig.6:

Fig. 6. The chronological mean for natural parameter during iterations (a), (c), (e), and the
corresponding difference between the mean and the actual data set (b), (d), (f).



To quantify the effect, we calculate the log-likelihood ),|(plog ZWX at the final
stage, and reach a log-likelihood on training set and genuine data on -302.37 and -
266.95 respectively. Together with features in model structure, we compare LePCA
with other models thoroughly:

Table 2. Comparison between models(figures for some previous models are tested in [11])

BPPCA EPCA BXPCA SePCA LePCA
Prior of z ),(N I0 flat ),(N Σμ ),(N I0 ARD
Prior of w ARD flat Conjugate ARD Conjugate
Canceled w no no w z
Full EM Applicable MAP MAP MAP Applicable
Train LL -13.3 -202.7 -338.3 -302.4
Prototype LL -808.1 -517.4 -231.0 -267.0

It is noticeable that both SePCA and LePCA yield to relatively better effect on both
training set and genuine data. EPCA suffers from over-fitting by using MLE. BXPCA
handles with Bayesian approach but the number for free parameters are still too
large(due to the unidentifiability of models). SePCA results in a better performance.
However, its probabilistic characteristic is reduced by using MAP instead of a full
EM. Allowing conjugate prior, LePCA increase the interpretability significantly. And
it is also possible to apply a sequential learning process based on conjugation.

5 Conclusion

In this paper we propose LePCA as a solution to handle the difficulties of
generalization of PCA to exponential family. From a probabilistic perspective, the
difficulty arises from the fact that latent variable can hardly be integrated out for
general exponential family distributions. Instead of using MAP as an approximation
during EM as previous models, we use Laplace approximation to cancel latent
variables, hence provide a more probabilistic solution. By addressing the similarity
between LePCA and the most general model with continuous latent variables as factor
analysis, our model can be taken as a more dynamic approach with the Hessian of the
emission distribution re-estimated at each iteration. It is easy to specify LePCA by
setting context-related parameters to give rise to other basic models as PPCA.
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