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ABSTRACT
Deep neural networks for image processing, especially image
classification, have become ubiquitous. To protect them as
intellectual properties and standardize the commercialization
of their service, watermarking schemes have been proposed
to authenticate the author of models. Many black-box water-
marking schemes insert a backdoor into the neural network by
poisoning the training dataset. Their performance declines if
the adversary who has stolen the model adds a noise reducer,
in particular an autoencoder, to ruin the backdoor. To cope
with this kind of piracy, we propose an enhanced watermark-
ing scheme by using triggers that penetrates the adversary’s
autoencoder. The penetrative triggers are generated from a
collection of shadow models that approximate the adversary’s
autoencoder, which is assumed to be hidden from the genuine
host of the model. The proposed scheme is shown to be resis-
tant to the filtering of autoencoders and significantly increase
the robustness of ownership verification.

Index Terms— Deep learning model protection, foren-
sics and security, watermark.

1. INTRODUCTION

Deep neural networks (DNN) for image classification have
boosted the wide application of computer vision. The cost of
building a state-of-the-art DNN model is high due to the con-
sumption in collecting data and tuning the parameters. For
this reason, voices are calling for treating DNNs as intellec-
tual properties. Numerous proposals used watermark as a
mechanism of ownership verification for DNN [1, 2, 3, 4, 5].
During the training process, the host of a DNN model em-
beds its identity information into the model as a watermark,
then the model is published. If an adversary steals the model
and claims to have trained it from scratch, then the host can
evoke the watermark to prove the ownership.

Current DNN watermarking schemes can be classified
into white-box schemes [4, 6, 7] and black-box ones [8, 9, 10].
In the white-box setting, the host has full access to the DNN
of the adversary. Under this setting, the host’s identity can
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be embedded into the model’s parameters. The case where
the parameters of the suspicious model are unrevealed, which
is more realistic, is the black-box setting. Most of the wa-
termarking schemes for the black-box setting depends on the
backdoor [8]. To insert a backdoor into a DNN, the host
encodes its identity into a set of trigger samples with corre-
sponding labels and addes it to the training set. The triggers
are hidden from publicity so the adversary does not know
them. To evoke the backdoor, the host inputs the triggers to
the model. If the model has learned these samples, it is likely
to return the labels assigned by the host. Otherwise the output
is a random guess, hence the ownership is proven.

Triggers can be seen as ordinary samples with an extra
stamp [8, 11]. Therefore the adversary can block the triggers
with a noise reducer, e.g., an autoencoder (AE) [12, 13] and
paralyze the watermark, this is known as AE piracy [14, 15].

To deal with this kind of piracy, we propose a persistent
watermarking scheme by using triggers that penetrates the
AE filter. The penetrative triggers are forged to be invariant to
the transformation of the AE. We show that these triggers can
preserve the performance of the watermark against the adver-
saty’s AE. The paper makes the following contributions:

• We address the threat model of AE piracy by adopting
shadow AEs to approximate the adversary’s AE.

• We propose a DNN watermarking scheme that is per-
sistent against the AE piracy by using penetrative trig-
gers generated from the shadow AEs and empirically
examine its efficacy.

To the best of our knowledge, this is the first effort in resolv-
ing the AE piracy with special triggers.

2. MOTIVATIONS

Ordinary triggers used in watermarking schemes [8], such as
images stamped by an extra mark or random noise can be
efficiently eliminated by an AE as shown in Fig. 1. Since the
triggers are prevented from reaching the DNN model, such
elimination sharply reduces the model’s performance on the
trigger set and compromises the ownership verification.



(a) Stamp trigger. (b) Trigger (a) after AE. (c) Random trigger. (d) Trigger (c) after AE.

Fig. 1. An AE can wreck triggers from [8].

To increase the persistency of the black-box watermark in
this scenario, we have to use triggers that can bypass the filter
of an AE. Meanwhile, the host’s identity has to be merged into
the triggers so the watermark is unforgeable. However, in the
black-box setting, the adversary’s AE is also hidden so it is
impossible to directly generate adversarial triggers from AE’s
gradient. Inspired by [16], we adopt a series of AE as shadow
models that approximate the adversary’s AE. The property of
being penetrative is formulated as an optimization task on the
shadow AEs. Triggers are generated by conjugately maximiz-
ing its penetration ability and its correlation with the author’s
identity. A watermarking scheme using these triggers is both
persistent against the AE piracy and unforgeable.

3. THE PROPOSED MODEL

3.1. Model Overview

Assume that the host is to train an image classification DNN
model on the training dataset with N labeled samples D =
{(xn, yn)}Nn=1. The domain of image is denoted by X and
the collection of all labels is denoted by Y .

The host embeds its identity information key into al-
together I prestamps with assigned labels {(Pi, yi)}Ii=1

where Pi ∈ X and yi ∈ Y [17]. To evade the adver-
sray’s AE, the host firstly trains a series of K shadow AEs:
A =

{
AEshadow

k

}K
k=1

. Then a penetrative stamp Ti meeting
the following requirements is generated for each Pi: (i). Ti
is similar to Pi to ensure the unforgeability of the watermark.
(ii). When Ti is added to a carrier xi,j ∈ X to forge a pene-
trative trigger Ti + xi,j and passes an shadow AE, the result
should be similar to Ti to achieve penetration. Finally, a
DNN model M is trained by tuning parameters on D with the
penetrative triggers {(xi,j + Ti, yi)}. The entire procedure is
illustrated in Fig. 2.

The adversary downloads M, adds AEadv to conduct AE
piracy, and broadcast M ◦ AEadv as its own product. It is ex-
pected that due to transferability, the host’s watermark re-
mains valid by having the triggers penetrate AEadv and cor-
rectly evoke the assigned labels, i.e., the triggers that pene-
trate the shadow AEs can penetrate AEadv as well.
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Fig. 2. The framework of genetrating penetrative triggers.

3.2. The Shadow Autoencoders

An autoencoder AE is trained on D as an approximation of
the identity mapping. AE is a composite of an encoder Enc
and a decoder Dec, i.e., AE = Dec ◦Enc. Let θ and φ be the
parameters of Enc and Dec, AE can be trained by minimizing
the reconstruction loss:

Lrec(θ, φ) =

N∑
n=1

‖xn − Decφ(Encθ(xn))‖22. (1)

The medium representation Enc(xn) is interpreted as the fea-
ture vector of xn. For the ease of image generation, a prior
normal distribution is usually exerted on the space of feature
vectors [12]. So AE is obtained by minimizing:

LAE(θ, φ) = Lrec(θ, φ) + λ1 · ‖Encθ(xn)‖22, (2)

where Lrec follows (1). The adversary’s AEadv is trained on
a dataset with a similar distribution as D (yet is unknown to
the host and might be disjoint with D), otherwise it cannot
perform as a noise reducer. With all shadow AEs trained on
D, following the inspiration from [16], we expect that they
correctly approximate AEadv since their underlying data dis-
tribution is identical. So penetrating them is tantamount to
penetrating AEadv.

3.3. Generating Penetrative Triggers

To produce penetrative stamps and triggers from D, shadow
AEs and the prestamp Pi, the host firstly selects a collection
of carrier images Di = {(xi,j , yi,j)}Jj=1 ⊂ D. This can be
done by using a block cipher to permuate the index of images
in D with (key, i) as the seed and include the first J images
into Di. The penetrative stamp Ti has to meet the following
constraints:

l(Ti, Pi) ≤ ε1, (3)

∀k, j, l(AEshadow
k (xi,j + Ti), Ti) ≤ ε2, (4)



where l is a metric defined on X . In order for the salient
pixels to correctly evoke the backdoor, the pixelwise mean
square loss is the optimal choice.

We design the following loss function to explicitly meet
all J ·K + 1 constraints in (3)(4):

L(Ti) =
J∑
j=1

K∑
k=1

‖AEshadow
k (xi,j + Ti)− Ti‖22

J ·K
+λ2·‖Ti−Pi‖22,

(5)
whose minimizer is a stamp close to Pi. After being added to
an image xi,j , it can pass any shadow AE.

To analyze the generation of Ti from (5), we expand each
AE to the first order gradient:

AEshadow
k (xi,j + Ti) = xi,j +∇xAEshadow

k (x)|xi,j
Ti + o(Ti),

(6)
where we have AEk(xi,j) = xi,j . Hence the gradient of (5)
w.r.t. Ti depends on AEshadow

k through its gradient at xi,j ,
whose value fluctuates slightly across AEs trained on simi-
lar images (details are shown in Section 4.1). This is because
all AEs are trained to approach the identity mapping for im-
ages subject to the distribution introduced by D, hence the
gradient is close to the identity matrix.

In the idealistic setting we would minimize the loss:

LIdeal(Ti) =

J∑
j=1

‖AEadv(xi,j + Ti)− Ti‖22
J

+λ2 ·‖Ti−Pi‖22,

(7)
As a substitude, we expect that the dependency of the domi-
nating term in the gradient of (7) w.r.t. Ti on AEadv, which is
proportional to xT

i,j(∇xAEadv|xi,j
− I) (plugging (6) into (7)

and retaining only the first-order term), can be correctly
estimated by that of (5). Since this term is linear w.r.t.
∇xAEadv|xi,j , we average the gradients of the shadow AEs
on the same point xi,j as a maximum likelihood estimation,
whose bias declines with an increasing K. So using many
shadow AEs can effectively approximate AEadv.

Finally, we add the penetrative stamps to their carriers to
form penetrative triggers and merge them with the training
dataset:

D′ = D \ {(xi,j , yi,j)}I,Ji=1,j=1 ∪ {(xi,j + Ti, yi)}I,Ji=1,j=1 .
(8)

The salient pixels of Ti and {xi,j + Ti}Jj=1 remain similar,
so the backdoor is successfully inserted into the published
model. The classifier M is trained on D′ by minimizing the
cross-entropy loss.

4. EXPERIMENTAL RESULTS

4.1. Experiment Settings

Experiments were conducted on MNIST [18] and Fashion-
MNIST [19] (F-MNIST). The task for both datasets is im-
age classification with ten classes. All images are of size

28×28. Both datasets haveN = 60, 000 samples for training
and 10,000 samples for validation. We adopted the AE struc-
ture whose encoder and decoder each has four consecutive
fully connected linear layers followed by the Tanh activa-
tion. The last layer of the decoder is the sigmoid function
to ensure that AE’s output lies in X . Shadow AEs and AEadv

were trained on two disjoint subsets of the original training
dataset with 40,000 and 20,000 samples by minimize the reg-
ularized reconstruction loss (2) with λ1 = 10−3. The mean
squared loss on the gradient of the shadow AEs was below
2 × 10−14, making the shadow model approximation empir-
ically effective. We chose I = 2 prestamps and set y1, y2 to
0 and 7. To minimize (5), J = 30 samples from the orig-
inal training dataset were selected for each prestamp, with
λ2 = 2 × 10−2. According to (8), the percentage of samples
being modifed was I×J

N = 0.1%. The backend model M is
the classical image classification network structure, ResNet-
18 [20]. The average validation accuracy for MNIST and F-
MNIST was 99.4% and 90.5%1.

4.2. The Number of Shadow Autoencoders

We firstly trained four AEs A = {AE1 − AE4} on MNIST
and assumed that the adversary adopted one AE from A. The
configuration and the classification accuracy on the trigger set
is demonstrated in Fig. 3. It can be observed that averaging

Fig. 3. Classification accuracy on penetrative triggers.

over many shadow AEs can efficiently approximate an AE
trained on the identical dataset, since its gradient can be bet-
ter estimated in this manner. Secondly, we examined whether
this argument continues to hold for the adversary’s AE trained
on a similar yet different dataset from the shadow AEs. The
pirated model M ◦AEadv’s classification accuracy ac on pene-
trative triggers and the average time consumption tm in gen-
etrating a penetrative stamp with several Ks is demonstrated
in Table 2. GeForce RTX 2080 Ti was adopted for GPU ac-
celeration. It can be concluded that using more shadow AEs
faciliated the transferability of penetrative triggers even if the
adversary’s AE is unknown. For the following experiments,
we adopted K = 8 shadow AEs.

1https://github.com/solour-lfq/PAE



Table 1. The average accuracy on the triggers ac and the bound of the probability of a deceptive authentication prob. The
optimal performances are highlighted.

Dataset & settings. Random [8, 17]. Stamp [8].
Outside the

training set [8].
Wonder

Filter [1]. Ours.

ac prob ac prob ac prob ac prob ac prob
MNIST without an AE. 0.98 4.3E-22 0.98 4.3E-22 1.0 1.3E-22 1.0 1.3E-22 1.0 1.3E-22

F-MNIST without an AE. 1.0 1.3E-22 0.98 4.3E-22 1.0 1.3E-22 1.0 1.3E-22 1.0 1.3E-22
MNIST with an AE. 0.21 0.04 0.13 0.76 0.12 0.88 0.11 0.97 0.94 4.7E-21

F-MNIST with an AE. 0.19 0.11 0.15 0.48 0.11 0.97 0.11 0.97 0.89 9.4E-20

Table 2. The classification accuracy ac on triggers and
the average time tm (in minute) of generating a penetrative
stamp.

Dataset K=2 K=4 K=6 K=8
ac tm ac tm ac tm ac tm

MNIST 0.47 4.7 0.93 7.9 0.93 10.7 0.94 13.5
F-MNIST 0.37 4.8 0.80 7.9 0.87 10.8 0.89 14.0

4.3. Persistency of the Penetrative Triggers

The prestamps, penetrative stamps and the output of AEs
given a penetrative trigger for both datasets are illustrated
in Fig. 4. In which x1(x2) was sampled from D1(D2) for

(a) P1. (b) T1, M. (c) T1, F. (d) AE(x1 +T1 ), M.(e) AE(x1 + T1 ), F.

(f) P2. (g) T2, M. (h) T2, F. (i) AE(x1 + T1 ), M.(j) AE(x2 + T2 ), F.

Fig. 4. Prestamps (a)(f), penetrative stamps (b)(c)(g)(h) and
the output of AEs given penetrative triggers (d)(e)(i)(j). M
and F represents MNIST and F-MNIST respectively.

either dataset. From Fig.4 (b)-(c), (g)-(h) we observed that
for different datasets, the penetrative stamps derived from the
same prestamp turn out to be distinct. Because AEs on differ-
ent dataset have diversified fissures, along which the triggers
developed into differentiated patterns. Meanwhile, it can be
observed from Fig. 4 (b)-(e), (g)-(j) that the triggers stamped
with penetrative stamps T1, T2 successfully penetrated the
autoencoder. Hence the backdoor and the watermark was
preserved against the AE piracy.

4.4. Performance of the Watermark

The authentication of the host’s identity with respect to a
model M depends on the accuracy ac of M or M ◦ AE (if the
adversary adopts an AE to invalid the triggers) on the triggers
{(xi,j + Ti, yi)}i,j . An imposter can pirate the proprietorship
of the model if its label prediction accuracy on the trigger set
by random guessing is higher than ac, which probability is
upper bounded by the Chernoff bound:

prob(ac) = min
λ≥0

{
(0.9 + 0.1 · eλ)60

e60·ac·λ

}
,

which is a monotonic decreasing function w.r.t. ac. There-
fore a larger ac remarks a more reliable watermarking
scheme. The average accuracy of M and M ◦ AE on ran-
dom triggers [17], stamp triggers, images outside the training
set [8], Wonder Filter [1] and penetrative triggers with
K = 8 are shown in Table 1.

It can be observed that all triggers are valid when the ad-
versary does not adopt an AE. However, when the adversary
adopts the AE piracy, the classification accuracy on the ordi-
nary triggers declines significantly. In this case an imposter
can easily claim the authorship and steal the model. If the host
adopts the penetrative triggers then the model’s performance
on the triggers remains high. Therefore the probability that an
imposter successfully steals the proprietorship remains negli-
gible. So by adopting penetrative triggers, the watermarking
scheme’s persistency against the adversary’s AE defense can
be substantially increased.

5. CONCLUSIONS

Autoencoder can filter out noise in input images and block
trigger samples, hence invalid DNN watermarking schemes
based on the backdoor. To increase the persistency of water-
marking schemes against an unknown autoencoder, we pro-
posed to tune the triggers into penetrative ones by having
them penetrate a series of shadow AEs. The penetrative trig-
gers are resistant to the autoencoder deployed by the adver-
sary, hence increase the functionality of backdoor-based DNN
watermarking schemes against the AE piracy.
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