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ABSTRACT
The wide application of deep learning techniques is boost-
ing the regulation of deep learning models, especially deep
neural networks (DNN), as commercial products. A neces-
sary prerequisite for such regulations is identifying the owner
of deep neural networks, which is usually done through the
watermark. Current DNN watermarking schemes, particu-
larly white-box ones, are uniformly fragile against a family of
functionality equivalence attacks, especially the neuron per-
mutation. This operation can effortlessly invalidate the own-
ership proof and escape copyright regulations. To enhance
the robustness of white-box DNN watermarking schemes, this
paper presents a procedure that aligns neurons into the same
order as when the watermark is embedded, so the watermark
can be correctly recognized. This neuron alignment process
significantly facilitates the functionality of established deep
neural network watermarking schemes.

Index Terms— Machine learning security, deep neural
network watermark, neuron alignment.

1. INTRODUCTION

Deep learning models have made significant achievements in
domains ranging from computer vision [1] to signal process-
ing [2, 3]. Since deep neural networks (DNN) can provide
high-quality service, they have been treating as commercial
products and intellectual properties. One necessary condition
for commercializing DNNs is identifying their owners. DNN
watermark is an acknowledged technique for ownership ver-
ification (OV). By embedding owner-dependent information
into the DNN and revealing it under an OV protocol [4], the
owner of the DNN can be uniquely recognized.

If the pirated model can only be interacted as a black-
box then backdoor-based DNN watermarking schemes are the
only option. They encode the owner’s identity into backdoor
triggers by pseudorandom mapping [5], variational autoen-
coder [6], or deep image watermarking [7]. Adversarial sam-
ples [8] and penetrative triggers [9] have been designed to
defend against adversarial tuning and filtering. However, in
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the realistic setting, an adversary can ensemble multiple DNN
models or adding extra rules to invalidate backdoors.

White-box DNN watermarking schemes have better per-
formance regarding unambiguity and forensics given unlim-
ited access to the pirated model. They embed the owner’s
identity into the model’s weight [10], its intermediate outputs
for specific inputs [11], etc. The white-box assumption holds
for many important scenarios such as model competitions, en-
gineering testing, and lawsuits.

Despite their privileges, white-box DNN watermarking
schemes are haunted by the functionality equivalence attack,
in particular, the neuron permutation attack [12]. The water-
mark is uniformly tangled with the parameters of neurons, so
the adversary can invalidate it and pirate the model by permu-
tating neurons without affecting the model’s performance.

To cope with this threat and foster the robustness of white-
box DNN watermarking schemes, we propose a neuron align-
ment framework. By encoding the neurons and generating
proper triggers, the order of neurons can be recovered. Then
the watermark can be correctly retrieved and the ownership is
secured. The contribution of this paper is threefold:

• We propose a DNN protection framework against the
neuron permutation attack. To the best of our knowl-
edge, this is the first attemp in defending such threat.

• By aligning neurons, the proposed framework can re-
cover the order of neurons and can be seamlessly com-
bined with established watermarking schemes.

• Experiments have justified the efficacy of our proposal.

2. THE MOTIVATION

In OV, the verifier module takes the parameters/outputs of
neurons as its input. An adversary can shuffle homogeneous
neurons (whose forms and connections to previous layers are
identical) using a permutation operator P such that the input
from the verifier’s perspective is no longer an identification
proof. The impact to the subsequent processing can be can-
celed by applying P−1 before the next layer so the function-
ality of the DNN remains intact. This neuron permutation
attack is examplified in Fig. 1. One solution to this threat is
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Fig. 1. A neuron permutation attack, P = (2, 3, 4).

designing verifier modules that are invariant to the permuta-
tion of its inputs, which is challenging due to the loss of infor-
mation and detached from all established white-box DNN wa-
termarking schemes. Instead, it is desirable that we can rec-
ognize P and cancel its influence by aligning the neurons into
their original order. To perform aligning, we encode neurons
by their scalar outputs, which are invariant under any permu-
tation in precedent layers. The neurons’ outputs on training
data, which are supposed to be diversified, are clustered into
several centroids as signals. To get rid of the deviation from
a neuron’s normal outputs to the centroids, some trigger sam-
ples are generated to correctly evoke these signal outputs as a
neuron’s identifier code. To guarantee robust reconstruction,
such encoding also needs to have good error-correcting ability
against model tuning.

3. THE PROPOSED METHOD

Assume that the watermarked layer contains N homogeneous
neurons, the code for a neuron is its outputs on a specialized
collection of inputs, known as triggers. Given the triggers, the
owner can obtain the codes for neurons and align them prop-
erly. What remains to be specified is the encoding scheme
and the generation of triggers.

3.1. Neuron encoding

Denote the length of the code by T and the size of the alphabet
by K. Each trigger invokes one output from each neuron and
is mapped into one position in each neuron’s code, so T is
also the number of triggers. Denote the output of the n-th
neuron in the watermarked layer for an input x as yn(x), let
the training dataset be {xd}Dd=1. The normal output space of
neurons in the watermarked layer is split into K folds. The
centroid of the k-th fold, ck, is computed as:

ck =

∑N
n=1

∑D
d=1 yn(xd) · I[yn(xd) ∈ Ck]
dND/Ke , (1)

where Ck is the range of the k-th fold containing the dNDk
K e-

th to the dND(k+1)
K e-th smallest elements in {yn(xd)}D,N

d=1,n=1.

This process is demonstrated in Fig. 2.
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Fig. 2. Splitting the output space, D=1024, N=10, and K=3.

Having determind the centroids, the n-th neuron is as-
signed a code rn ∈ {0, 1, · · · ,K}T , the dictionary {rn}Nn=1

is spanned using a error correction coding scheme [13]. It is
expected that the output of the n-th neuron on the t-th trig-
ger, yn(xt), is close to crn,t . To enable error correcting within
fewer than Tcorrupted positions and each position shifts within
at most Kcorrupted folds, it is necessary that T and K satistisfy:

N ·

Tcorrupted∑
t=1

(
T

t

)
·Kt

corrupted

 ≤ KT . (2)

3.2. Trigger generation

To generate triggers that correctly evoke the neurons’ outputs
as codes, we adopt the method in forging adversarial sam-
ples [14]. Concretely, the t-th trigger triggert is obtained by
minimizing the following loss:

L1(triggert) =
N∑

n=1

‖yn(triggert)− crn,t‖22, (3)

in which the parameters of the entire DNN are frozen. To in-
crease the robustness of this encoding against the adversary’s
tuning, we suggest that tm be optimized w.r.t. the adversar-
ially tuned versions of the watermarked DNN as well. Let{
yjn
}J
j=0

denotes the mapping introduced by the n-th neu-
ron under all J kinds of tuning (j=0 represents the original
model), the loss function becomes:

L2(triggert) =
J∑

j=0

N∑
n=1

‖yjn(triggert)− crn,t
‖22, (4)

The collection of all triggers T = {triggert}Tt=1 forms
the owner’s evidence for neuron alignment. This process is
demonstrated in Fig. 3 (a).
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Fig. 3. The trigger generation process and the neuron alignment process.

3.3. Neuron alignment

Given the white-box access to the suspicious DNN, the owner
can recover the order of neurons in the watermarked layer by
the following steps: (i) Inputting all triggers T sequentially
into the DNN. (ii) Recording the outputs of the n-th neurons
in the watermarked layer as {ŷn(triggert)}Tt=1. (iii) Tran-
scripting ŷn(triggert) into a code r̂n ∈ {0, 1, · · · ,K}T :

r̂n,t = argmin
k
{‖ŷn(triggert)− ck‖2} .

(iv) Transcripting r̂n into an index in:

in = argmin
n′

{
T∑

t=1

|rn′,t − r̂n,t|
}
,

Finally, the owner aligns all neurons according to their indices
and conducts OV using its white-box watermark verifier. This
process is demonstrated in Fig. 3 (b).

Remark: An adaptive adversary might breach this align-
ment by rescaling the weights across layers. This can be
neutralized by normalizing parameters before alignment or
adopting a smaller K to ensure distinguishability.

4. EXPERIMENTS AND DISCUSSIONS

4.1. Settings

To examine the validity of the proposed framework, we se-
lected two DNN structures, ResNet-18 and ResNet-50 [15].
In each DNN, we selected the second (l2) and the third (l3)
layers to be watermarked. l2 contains 64 homogeneous neu-
rons and l3 contains 128 ones. For these convolutional layers,
the output where neurons are recognized and decoded is
the value of one specific pixel. Both networks were trained
for three computer vision tasks: MNIST [16], FashionM-
NIST [17], and CIFAR-10 [18]. The training of all DNN
backbones and triggers was implemented by Adam [19] with
PyTorch.

(a) ResNet-18. (b) ResNet-50.

Fig. 4. Distributions of watermarked layers’ outputs.

N
T

20 40 60 80 100 120 140 160

64 4 12 21 29 38 47 56 65

128 4 11 20 28 37 46 55 64

Table 1. The maximal number of flipped positions that can
be corrected, Tcorrupted, w.r.t. N and T , K = 2.

4.2. The configuration of parameters

To compute the centroids, we measured the distributions of
outputs for watermarked layers on normal samples, results are
demonstrated in Fig. 4. These distributions remained almost
invariant to the selection of dataset, network, and layer. To
ensure maximal distinguishability, we adopted K=2 and com-
puted the centroids c0=0, c1=2.5 by (1). With Kcorrupted=1,
the error correcting ability computed from (2) is shown in
Table. 1. We adopted T=160 in the following experiments,
where flipped bits up to 40% would not compromise the
unique decoding.

4.3. Comparative studies

For comparison, we compared five candidate schemes for
trigger selection. (N): Normal samples from the training
dataset. (R): Random noises. (O): Out-of-dataset samples.
(T1): Triggers generated be minimizing L1 in (3). (T2):



(a) l2. (b) l3.

(c) l2. (d) l3.

Fig. 5. The distribution of watermarked layers’ outputs for
different triggers. In (c)(d), the DNN has been fine-tuned.

Metric (N) (R) (O) (T1) (T2)

Inter-cluster (↑). 2.4 1.9 1.5 2.5 2.5

Intra-cluster (↓). 1.3 0.8 0.8 0.1 0.2

Accuracy (%). 1.0 2.3 1.3 98.4 97.2

Table 2. The statistics of neurons’ outputs.

Triggers generated by minimizing L2 in (4) with J=6 involv-
ing three rounds of fine-tuning and three of neuron-pruning.
For (N)(R)(O), the centroids are also selected by (1) and the
code of each neuron at the t-th position is assigned as the
index of the closest centroid to its output on the t-th input.

The outputs of neurons in ResNet-50 trained on CIFAR-
10 for one input are shown in Fig. 5(a)(b). From which we
noticed that the outputs w.r.t. (T1)(T2) concentrated to K=2
centers. (The percentage of neurons outputting approximately
0 or 2.5 was not strictly 50%, since the outputs of around 2%
of neurons were uniformly zero.) Therefore, the code of neu-
rons under (T1)(T2) can be unambiguously retrieved. Nu-
merically, we computed the averaged inter/intra-cluster dis-
tance for all trigger patterns with two clusters obtained by
K-means [20] and the accuracy of aligning against random
shuffling on l3, the results are listed in Table. 2. From which
we justified that the codes derived by (T1)(T2) are more in-
formative. After fine-tuning, the distributions of outputs un-
der (T1)(T2) were differentiated as shown in Fig. 5(c)(d), so
(T2) is more robust against model tuning.

4.4. The performance of watermarking backends

To study the performance of white-box DNN watermarking
schemes after the neuron permutation attack and alignment,
we considered four state-of-the-art watermarking schemes:

Attack Uchida Fan Residual MTLSign

(NP) 0.0,
(95.7,95.5)

0.0,
(95.1,95.1)

0.0,
(98.3,98.0)

0.0,
(99.1,98.6)

(FTP) 0.0,
(69.4,90.3)

0.0,
(74.3,75.2)

0.0,
(82.7,87.4)

0.0,
(79.9,87.9)

(NPP) 0.0,
(54.4,74.3)

0.0,
(67.9,76.5)

0.0,
(77.7,82.6)

0.0,
(75.4,83.9)

Attack Uchida Fan Residual MTLSign

(NP) 0.0,
(96.3,95.4)

0.0,
(96.0,95.6)

0.0,
(99.1,99.4)

0.0,
(98.7,98.7)

(FTP) 0.0,
(70.1,89.1)

0.0,
(74.9,75.9)

0.0,
(84.6,88.0)

0.0,
(79.6,90.5)

(NPP) 0.0,
(58.9,72.5)

0.0,
(63.7,73.4)

0.0,
(79.8,81.3)

0.0,
(75.9,84.9)

Table 3. The performance of watermarking backends after
neuron alignments for ResNet-18 and ResNet-50. The results
in each entry are: the accuracy of OV after the attack and
its increase (in %) with alignment by ((T1), (T2)), averaged
across three datasets.

Uchida [10], Fan [21], Residual [22], and MTLSign [11]. All
watermarks were embedded into both l2 and l3.

We conducted three attacks to the watermarked layer:
(NP): Neuron Permutation; (FTP): Fine-Tuning and neuron
Permutation; (NPP) Neuron-Pruning and Permutation. Then
we applied neuron alignment and recorded the percentage
of correct verifications from the watermarking backends in
1,000 instances, results are summarized in Table. 3. Without
neuron alignment, any permutation-based attack can reduce
the OV accuracy to under 1%. After alignment, the accuracy
in all cases increased significantly. Compared with (T1),
(T2) is more robust against tuning and pruning in better re-
constructing the order of neurons. Therefore, by adopting the
neuron alignment framework, the security levels of these wa-
termarking schemes are substantially increased. Meanwhile,
the trigger generation process does not modify the original
DNN, so it can be parallelized and would not bring extra
damage to the protected DNN.

5. CONCLUSIONS

We propose a neuron alignment framework to enhance es-
tablished white-box DNN watermarking schemes. Clustering
and error-correcting encoding are adopted to ensure the avail-
ability and distinguishability of neuron encoding. Then we
use a generative method to forge triggers that can correctly
and robustly reveal the neurons’ order. Experiments demon-
strate the effectiveness of our framework against the neuron
permutation attack, a realistic threat to OV for DNN.
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