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Abstract—The problem of maximizing the spread of influence
by selecting a subset of participants in a social network as
source, known as influence maximization, is a fruitful topic with
straightforward application value. Greedy algorithms that select
the optimal node one by one lays the foundation of follow-up
researches, and plentiful studies have been taken to improve
the efficiency of greedy-based algorithms. However, the greedy
methods can easily fall into adversary pitfalls, and corresponding
improvements have been few. In this paper, a conjugate learning
automata based method, utilizing the ability of cooperation in
learning automata games, is proposed to obtain better-than-
greedy propagation range. Comprehensive simulations in both
synthetic and real-world datasets verify that the proposed method
can attain better propagation range in some scenarios and is
equally competitive respecting time consumption.

Index Terms—influence maximization, learning automata, so-
cial network

I. INTRODUCTION

Online social network (OSN), the republic of cyber citizens,
has been attracting attention of people in the way the physical
world has been doing to our ancestors. As a graph structure
whose vertices (nodes) and edges denote participants and the
connections within respectively, an OSN reflects the collec-
tive behavior of a human community in sharing knowledge,
coming up with a decision, etc.

Among the infinite variety of aspects to be explored in OSN,
Information Maximization (IM) has drawn rising attention [/1]].
IM aims at selecting a subset of participants in an OSN as
source or “seeds” which then propagate their information to
other participants through connections represented by edges.
Figure [I] illustrates an example of information propagation,
the black arrows represent the directed connections, and the
intensity of color denotes the propagation order. The “seeds”
are besieged by the dashed ellipse. For a given graphical
structure G = (V, E) of an OSN and the maximal number
of source vertices, K, an IM algorithm should find a subset
S C V,|S| = K to maximize the propagation range, namely
the number of vertices that receive information [1]] [2].

IM is the prototype of many practical tasks as viral mar-
keting [3]], pollution detection [4]], rumor supervision [3], etc.
These seemingly different missions share the same spirit: iden-
tifying an optimal subset of participants in order to maximize
the number of affected nodes. Therefore IM has aroused in-

Fig. 1. The propagation of information in a social network

terest from diversified disciplines: social science, commercial
advertisement, cyber security and algorithmic studies.

Approaches to solve the problem of IM are split into three
genres: the greedy approaches, the heuristic approaches and
a mixture of them. A greedy approach identifies the set of
”seeds” by including locally optimal vertex one at a time.
By locality, we mean that it takes the selected vertices as
given and looks for a new vertex that maximizes the marginal
increment of propagation range by simulation. It then includes
the new node into the set of ’seeds”. A heuristic approach
takes advantage of intrinsic features within the graphical
representation, e.g., the in-degree, out-degree, centrality, clique
structure, etc. It then uses some specific rules to filter incapable
vertices and selects an optimal subset of “seeds”. Though
heuristic approaches prevail in efficiency by evading tremen-
dous Monte-Carlo procedures, they lack provable accuracy and
objectiveness.

As a combinatorial optimization task, IM is essentially an
NP-hard problem [2], not to mention that the optimization
has to be conducted in a stochastic environment. The ratio
between the outcome of greedy approaches and the optimal
one is lower bounded by (1 — 1) ~ 0.63 [_2], leaving plentiful
space for adversary constructions that could drastically hinder
the efficacy of greedy approaches. Consider the setting in
Figure 2] where the propagation ranges of four optional
vertices (v1,va,v3,v4) are (81 + Sz, S1 + S3, S2 + S4, S5) With
§1 = S9 > 2-83 > 85 > s3 = s4. If K = 2,agreedy


dichong95@sjtu.edu.cn
solour_lfq@sjtu.edu.cn

method will select v; and vy with coverage s; + s2 + ss,
but the optimal choice is apparently v, and vs with coverage
$1 + s2 + s3 + s4. In adversary cases like Figure [2, conju-
gate optimization can outperform greedy ones by selecting
multiple vertices simultaneously instead of selecting the one
that maximizes the marginal interest greedily. Meanwhile,
the design philosophy of selecting the locally optimal vertex
implies that the propagation is crucially promoted by a series
of centroids that are particularly powerful in propagation. This
assumption, however, might be fainting since decentralization
of social networks has become popular [6] [7]. Therefore
seeking an efficiency conjugate Monte-Carlo method is of
practical value and is an interesting end to be investigated
in itself. By conjugate Monte-Carlo, we mean to resort to
simulation rather than heuristic features and attempt to acquire
an optimal collection of vertices simultaneously. However, this
line of reasoning has been suppressed by the formidable cost
in time consumption.

Vertex: V2 U1 V3 V4

Coverage: 51 82

Fig. 2. A coined toy pitfall that deceives a greedy IM method. |Seeds| = 2.

It has been reported that learning automaton (LA) can
cooperate to achieve combinatorial optimization tasks with
acceptable time complexity [8]. As an adaptive unit, LA
can learn the most appropriate action/decision in a stochastic
environment. When a collection of LAs are trained jointly, they
can possibly avoid the pitfall designed to trap greedy methods
and obtain a better performance while preserving efficiency.
Thus it is intuitively feasible to maximize influence on social
networks with conjugate trained LAs.

The contribution of this paper is three-folded:

1) We propose to train a collection of LA conjugately
to solve the problem of influence maximization, which
is capable of obtaining better-than-greedy results in
propagation range.

2) The proposed conjugate LA (CLA) is shown to be a
proper generalization of greedy approaches. Since it
can degenerate to greedy methods gracefully by altering
hyper-parameters.

3) Extensive experiments are conducted on synthetic
datasets and real-world datasets. It is observed that
pitfalls designed to confuse greedy approaches fail to
confuse CLA, and CLA is competitive in efficiency
against other state-of-art methods.

This paper proceeds as follows: Section [lI| formalizes the

problem of IM and reviews related literature. Section [II]

presents the proposed method, conjugate learning automata, in
detail. Section [IV|is devoted to simulations on comprehensive
datasets, comparisons between the proposed model and state-
of-the-art approaches and consequent discussions. Section
concludes the paper.

II. RELATED WORKS
A. Influence Maximization

The last decades have witnessed the development of IM
from a tentative marketing proposal to a fruitful academic
topic. The OSN is represented by a weighted directed graph
G = (V, E), where the weight of an edge v; ; € V denotes
the possibility that the ¢-th participant sends its information to
the j-th. The propagation function o : P(V) — R can be
simulated from G. Given a collection of “seeds” S C V, o(S)
is the average range of propagation, i.e., the cardinality of
influenced vertices. An IM algorithm aims to find an optimal
subset Sy of V' such:

max
|S|=K,SCV

Sim = arg {o(9)}- ey

The difficulty of IM is embodied in two aspects: i).Selecting
an optimal collection in IM has been proved to be NP-hard
[2]. So IM algorithms have to attain a balanced compromise
between accuracy and efficiency. ii). The propagation function
o(-) is stochastic, leaving the analytic optimization w.r.t S
intractable, types of methods that deal with this problem are
as follows:

1) Greedy methods usually utilize the submodularity of
o(-) to accelerate the simulation process. CELF [4]
and CELF++ [9] have alleviated time complexity of
naive Monte-Carlo greedy methods dramatically. And
the influence range obtained by a greedy method is
proved to be no less than 63% compared with the
optimal solution [2]. But adversary constructions such as
Figure. [2] still haunt greedy approaches and leave space
for improvement.

2) Heuristic methods explore features from G rather than
taking o(-) as a black box and improve the efficiency
by narrowing the candidate set of “seeds”. Methods
as Degree [2] take advantage of degree information to
derive results. Methods as PageRank [10] show that
models from other disciplines can be used in IM heuris-
tically by analogy as well. Some late studies [[11] [|12]]
aim at identifying the cluster structure in the OSN to
help initialization. However, the outcome of a heuristic
method can be arbitrarily bad.

3) Hybrid methods use heuristic features and greedy meth-
ods simultaneously such as [[13[] and [[14].

B. Utilizing Learning Automata in IM

The optimization target o(-) is a stochastic function, so is
the environment for learning automata. Therefore it is intu-
itively feasible that LA can find the optimal subset. A single
LA is an appropriate optimizer for single-valued function
[15], thus it is plausible to use LA in the greedy methods of



IM to maximize the marginal increment of influenced range,
and it turns out that LA can be even faster than traditional
greedy methods [16]. Additionally, it has been proposed that
a collection of LA trained conjugately, i.e., simultaneously, is
capable of addressing combinatorial optimization tasks [17].
Therefore it is possible to apply conjugate LA in the problem
of IM to attain better-than-greedy results while preserving
some degree of efficiency.

III. PROPOSED METHOD
A. Learning Automaton

LA is an important reinforcement learning method, which
can adaptively explore the optimal action that maximizes
the reward among all possible choices by interacting with
a stochastic environment. An LA with its environment is
formalized as a triplet < A, B,D >, where A = {a, a2, -}
is the set of optional actions, B = {81, 32, - } is the set of
possible feedback from the environment, and D is the reward
matrix of the environment following

Pr{Bq|lor} = dy g, By € B,ar € A. )

For most LA schemes, the training is equivalent to tuning
the normalized action probability vector P = [Py, P, -] to
maximize the expected reward 3 d. - P, - B4 The training
process consists of a number of iterations, at the ¢-th iteration,
an LA selects the action «(t) according to P(t)

Pr{a(t) = a,.} = P.(t). 3)

The environment receives «(t) and returns the feedback
B(t) satisfying ). The LA receives §5(¢) and updates P(¢)
into P(¢ + 1) according to some specific strategy. The LA
gets converged and terminates training when max,. {P.} > T,
where T is a predefined threshold.

B. Conjugate Learning Automata

The conjugate learning automata (CLA) originates from
learning automata games where multiple independent LAs
co-operate or compete with each other to obtain the Nash
equilibrium [[18]. Since it seeks a global equilibrium rather
than a greedy one, it can possibly handle the coined pitfall that
confuses greedy methods in the problem of IM and enlarge the
influence range.

B(t)

Fig. 3. CLA with K LA. The external environment of LA; is besieged by
the dashed red polygon.

As shown in Figure 3] a CLA comprises multiple LAs. At
the t-th iteration, each learning automaton LAj selects an
action oy, (t) according to its probability vector P*(t). The
CLA subsequently combines the actions of its components
to form a vector &/(t) and sends it to the environment. The
stochastic environment then reacts in 3(t) with respect to &(t).
Upon receiving the feedback, each LA independently updates
its internal states/probability vector. Literature [[18]- [20] have
theoretically proved the convergence of CLA. However, when
the Nash equilibrium in the environment is not unique, CLA
only converges to one of them, and global optimality is
intractable.

C. Conjugate Learning Automata in Influence Maximization

To map the problem of IM into CLA, we define the action
set, the feedback and the external environment as follows:

e CLA structure. If K members of OSN are to be selected
as seeds, then we have K LA operate conjugately.

o Action. The action set Ay for the k-th LA is defined as
all possible vertices that can be chosen as one of the
”seeds”. The associated action vector corresponds to the
chosen set of “seeds”.

e Feedback. The information spread range is the top con-
cern in IM. For the given “seeds”, the feedback is the
number of influenced nodes in the social network, i.e.,
B(t) = o(d(t)), which is obtained by a propagation
simulation in OSN.

o External Environment. The external environment for each
LA includes not only the network but also other automata,
hence is non-stationary. For any LA, the reaction pattern
of its environment, which consists of the network struc-
ture and other LAs, varies in time (the probability vector
of other LAs are changing at the same time). Thus the
convergence theorem for LA in stationary environments
fails.

The training procedure of CLA is modified as in Algorithm
to ensure convergence. During iterations, only one LA
can update its internal states, while other LAs keep their
probability vector fixed. In this way each LA is trained
in a stationary environment, hence convergence is secured.
Meanwhile, we prohibit an LA to converge to its optimal
action while leaving other LAs totally untrained, because this
is tantamount to greedy solution and yields no more interest.
So the temporary halt condition is max, {P.} > J, where ¢
is the temporary threshold smaller than 7. Thence each LA
learns some rough knowledge about the optimal distribution
of seeds while the flexibility for cooperation is saved. The
philosophy behind is an analogy of adiabatic process, with §
as the counterpart of present temperature and 7 the destinated
temperature. To ensure cooperation, the adiabatic assumption
is exerted so § increases so slowly that the system is always
in equilibrium.

Having altered the structure of CLA, the specification of
individual LA is left to be addressed. This aspect is as vital
as the CLA training scheme since an efficient LA algorithm



Algorithm 1 CLA for IM

Algorithm 2 The extended version of DGPA, eDGPA

1: Input Temporary threshold: 6 = dy € (0, 1).
Input Iterative increment: Ao € (0, 1).
Input Convergence threshold: 7 € (0, 1).
Initialize Convergence flag: 7 = 1.
Initialize Flag vector: I = 1, an all-one vector.
repeat
for K =1to K do
if I, = 1 then
k= k.
Break.
end if
12 end for
13:  //Choose the k-th LA to update.
14:  repeat
15: Each LA independently selects an action, the actions
compose the associated action vector of CLA, i.e.,the
trial set of “seeds”. The efficacy of this selection of
seeds is evaluated by a propagation simulation.
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16: Only the k-th LA updates its probability vector P*.

17 until max, {P*} > 6.

1. I(k) = 0.

19:  if > I =0 then

20: /7A11 LAs have acquire certain information. Lifting
the threshold promotes cooperation.

21 if 6 <7 then

22: d =min{d + A4, T }.

23: Re-initialize T = 1.

24: else

25: Convergence Flag 7 = 0.

26: end if

27:  end if

28: until Convergence Flag 7 = 0.

can reduce the required interactions with the environment and
improve the speed of finding the optimal set of “seeds”.

However, most established LA algorithms operate in en-
vironments where the feedback is binary, so they have to
be modified since the feedback in IM is multi-valued. We
propose to extend the traditionary Discrete Generate Pursuit
Algorithm (DGPA) [21] as Algorithm DGPA prevails in
concise structure, low computation cost and analytic opti-
mality. And DGPA can be readily extended to multi-valued
feedback environments.

To summary, CLA in IM is the Algorithm [I] with lines 15-
16 specified by Algorithm [2] The trade-off between locality
and globality is realized by 9.

e When dg < 7T, Algorithm E]reduces to an ordinary CLA
where all LA are trained almost independently, but stable
convergence is sacrificed.

e When §p — 7T, our proposal degenerates gracefully to
the greedy method. Since the fluctuations from under-
trained LA are approximately white noise and eliminate
each other, CLA obtains the greedy option one at a time.

1: Input Temporary threshold: ¢ € (0, 1).

2: Input Resolution parameter: N € N*,

3: Initialize : Update Step Size: A = ﬁ, where R is total
number of actions.

: Initialize : Action probability vector: P(0) = £15.

: Initialize : Action selection times vector: Z = 1.

. Initialize : Rewards Estimation Vector: E = 1.
repeat
At the ¢-th iteration, select action «(t) = a,- by ().
Receive the feedback B(t) from the environment and
update the states as follows:

10: E.=[Z.-E.+pW)]/[Z-+1],

11:  Z,+ +.

122 W,=|{s:as€ A E; > E,}|

13:  Update the action probability vector P(t) — P (¢t + 1)

as follows:
14 P, = min{P; —Q—Vﬁ,l}VaSeA E, > FE,,
0},Yas € A: Es < E,,

O ® NN Nk

15 ps = max{P; — x5+ W ,

16: P.=1— > P,.
s#T, €A

17: t+ +.

18: until max, {P,.} > 4.

The step AJ, by which ¢ gradually increases to 7, is
the resolution of the simulation of the adiabatic process. It
naturally reflects the trade-off between exploration (when Ad
is small) and exploitation (when AJ is large), an innate duality
in reinforcement learning.

IV. EXPERIMENTAL AND DISCUSSION

A. Experimental Settings

All experiments are conducted under the weighted cascade
(WCQ) diffusion model [2]], where a node v in social networks
is influenced by edge (u,v) € E with probability - Tearee(o
For comparison, CELF, the representative greedy algorl%
with high efficiency, is selected as the baseline algorithm. The
heuristic methods have generally smaller spread and are saved
from comparison [16].

For the extended DGPA, the resolution parameter A is set
as the number of “seeds”, K. CLA in all experimental are
parameterized by (&g, AJ, T) (K, 77,0.999). Besides, for
greedy-based algorithms, i.e., the naive greedy algorithm and
CELA, the number of Monte-Carlo simulations is uniformly
set to 10000, which is conventional in literature.

B. Synthetic Datasets

Firstly, consider the toy example in Figure[2] with 17 vertices
altogether, specifically s; = so = 5,53 = 54 = 2,55 = 3 and
K = 2. We compare CLA with the naive greedy method using
eDGPA (6 = 0.999) to select the local optimal vertex greedily.

The greedy approach will select v; at first anyway, as shown
in Figure While the CLA with two LA can identify the
optimal options {v2, vz} correctly, as illustrated in Figurem
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(a) Probability vector of the eDGPA in greedy method to select the first node, after the O, 25, 50, 75 and 100y, iteration.
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(b) Probability vector of the first LA in CLA, after the O, 254, 50, 75 and 100y, iteration.
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(c) Probability vector of the second LA in CLA, after the O, 25, 50, 7S¢ and 100y, iteration.

Fig. 4. The change of probability vectors through training for greedy LA and CLA in FigureIZl In all subfigures the vector varies during iterations from left
to right. The horizontal axis denotes the nodes while the vertical axis denotes the probability.

and The components for v4-v15 remain trivial and are
truncated from the demonstration.

Secondly, a large synthetic network following the WC
model with 7451 nodes is coined to verify the outperformance
of CLA to greedy methods. Consider a network shown by
Figure [5 in which M, is a subnetwork with an average
propagation range of M with respect to the information input
from v, where p =1,2,--- , P.

Fig. 5. A large-scale adversary network against greedy IM methods.

Assuming that vy can send its information to only one
successor. By setting P = 50, M = 100 and K < P.
The optimal solution is to choose K nodes directly from
{fup}f:1 with the propagation range o(S;) = MK + K,
while the greedy methods will choose v and (K — 1) vertices
from {vp}P with the expected propagation range o(S2) =

p=1’
(K-—1)(MK+K+1-M)+(P-—K+1)(MK+K+1)
ya .

The comparison
between the spread range between CLA o(S;) and greedy
methods o(S2) and the difference in time consumption are
shown in Figure[6] where CLA, the naive greedy method using
eDGPA (6 = 0.999) and CELF are compared.

C. Real-World Social Networks

Three real-world datasets including Arxiv GrQc, HEP-TH
and HEP-PH EI, which have been widely used to evaluate
the performances of IM algorithms, are adopted to verify the

Thttp://www.arXiv.org
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(a) The increment of influence range (b) The number of required simula-
by using CLA instead of greedy tions in networks of CLA, CELF and
methods with eDGPA. the greedy method with eDGPA.

Fig. 6. Comparisons between CLA and greedy methods in the network of

Figure [}

effectiveness of the proposed CLA. Table ] shows the statistics
of the three datasets.

TABLE I
STATISTICS OF THE REAL-WORLD DATASETS

HEP-TH HEP-PH

9877 12008
25998 118521

Datasets | GrQc

Nodes 5242
Edges 14496

We compare the spread ranges of CELF and CLA (the
spread range of the naive greedy is almost the same as
CELF), and the computing efficiency between the naive greedy
methods, CELF and CLA. The result is illustrated by Figure
1!

It can be observed from Figure [7] that:

1) There exist cases where CLA outperforms greedy meth-
ods in influence spread range by choosing different
source nodes (GrQc with K = 2, etc.). This indicates
that CLA is capable of outperforming greedy methods
by avoiding potential pitfalls.

2) In most settings, the influence ranges of greedy methods
and CLA are the same. This result implies that adversary
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(a) The GrQc dataset.
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(b) The HEP-TH dataset.
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(¢) The HEP-PH dataset.

Fig. 7. The comparisons between the naive greedy method, CELF and CLA
in influence range and efficiency.

3)

construction is scanty in at least studied datasets. Other-
wise there would be an explicit difference in influence
range as Figure [f] This result also helps to validate the
accuracy of greedy methods on these datasets.
Respecting the efficiency, or the times of simulations,
CLA outperforms the naive greedy method and CELF.
This fact indicates that apart from achieving similar
influence range, CLA prevails in efficiency and is an
adorable method to take to solve the problem of IM.

V. CONCLUSIONS

On addressing IM, there have been plentiful studies, admit-

ting

the greedy paradigm, aimed at improving the computation

efficiency. In this paper we attempt to obtain better-than-
greedy propagation range using CLA. An iterative learning
strategy with an extension of traditional DGPA is proposed to
implement the conjugate optimization. Comprehensive simula-
tions in both synthetic and real-world datasets verify that CLA

can

attain better propagation range in some scenarios and is

equally competitive respecting time consumption.
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