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Abstract—Classification of malicious software, especially in a
very large dataset, is a challenging task for machine intelligence.
Malware can have highly diversified features, each of which
has highly heterogeneous distributions. These factors increase
the difficulties for traditional data analytic approaches to deal
with them. Although deep learning-based methods have reported
good classification performance, the deep models usually lack
interpretability and are fragile under adversarial attacks. To
solve these problems, fuzzy systems have become a competitive
candidate in malware analysis. In this paper, a new fuzzy-based
approach is proposed for malware classification. We focused on
portable executable files in the Windows platform and analyzed
the distributions of static features and content-oriented features.
Fuzzification was used to reduce the ubiquitous impact of noise
and outliers in a very large dataset. Finally, a novel boosted
classifier consisted of fuzzy decision trees and support vector
machine is proposed to perform the malware classification. By
using fuzzy decision trees, the inner structure of the classifier can
be readily interpreted as discriminative rules, while the novel
boosting strategy provides state-of-the-art classification perfor-
mance. Extensive experimental results showed that our method
significantly outperformed several state-of-the-art classifiers.

Index Terms—Malware classification, fuzzy decision tree,
boosted random forest, computer security.

I. INTRODUCTION

MALICIOUS software is a concomitant threat of com-
puter systems. Although tremendous effort has been

devoted to developing security tools that protect electronic
devices, the malware industry still takes the prevenient position
and causes continual damage in commerce, privacy, and even
physical security. Nowadays, the diversity of malwares and
their speed of propagation grow even faster with the emergence
of modern communication technologies like smartphones, the
internet of things and cloud service. Variants of malwares
have infiltrated into almost all available platforms to peek,
steal or destroy valuable information. As of February 2020,
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AV-Test Gmbh 1 has collected over 1,024 million malwares,
of which 19 million were exposed within just the first two
months of 2020. The analysis of such diversified malwares is
beyond the capability of current intelligent systems, and their
robustness, efficiency, and scalability to large datasets are some
of the major challenges. So far, techniques based on machine
learning has been recognized as a promising approach to
analyze and prevent malwares [1]–[3]. But when a vast number
of malware samples are provided online, whether current
paradigms scale well to very large collections of malwares
remains a questionable issue.

Machine learning models are mostly applied to two aspects
of malware analysis: (i) malware detection, which classifies
between malicious and benign software, and (ii) malware
classification, which classifies between different families or
categories of malwares. The problem of malware detection
has attracted much research [4]–[6]. Reports on a series of
benchmark datasets have verified the applicability of many
machine learning approaches such as deep learning [2], ran-
dom forest [5] and boosting [7]. However, the problem of
malware classification turns out to be much more challenging.
Different categories of malwares have different functionalities
and invoke different level of alert from users, and they should
not be responded identically. To name a few, ransomware
that kidnaps computers and demands ransom occupies a tiny
portion of all malwares, yet it brings significant loss for large
companies that have important data stored in their disks.
The attack of WannaCry (ransomware that robbed users for
bitcoin) that erupted since May 2017 has evaporated billions
of dollars [8]. Password stealer (PWS) is particularly harmful
for individual users since most users tend to use identical
or homogeneous password for their e-mail, social network
and banking accounts. The attack of PWS on one single
electronic device could bring a potentially much larger threat
to an individual’s possessions, privacy, and security. Virus and
worms have recently aimed at high-performance computers
in colleges, universities, and companies to steal computing
resources for bitcoin mining. Therefore, malware classification
can help to deploy different pertinent reaction strategies to bet-
ter protect different computer systems. Moreover, the classifier
itself might provide information about the differences between
different categories of malwares as well as their forensics
information.

1https://www.av-test.org/en/statistics/malware/
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Hitherto, both traditional machine learning and deep learn-
ing models have been applied in malware analysis. Both meth-
ods have yielded high accuracy in malware detection, while the
results for malware classification are relatively scarce. Many
of the studies on malware classification stem from the Mi-
crosoft 2015 Kaggle competition [9], in which deep learning
methods based on the visual feature of malware obtained an
accuracy of 99.8%. Yet deep learning-based methods suffer
from several problems including (i) the complexity of the
model structure prevents interpretability and explainability, (ii)
the features extracted (especially visual feature) consume too
much memory and their validity remains vague, (iii) the model
can be attacked by gradient based adversarial methods as in
image classification tasks [10]–[12]. Recently, fuzzy theory
has been incorporated into deep learning system to provide
interpretability and robustness [13]–[16]. A large family of
fuzzy decision-makers such as fuzzy clustering [17], [18],
fuzzy support vector machine [19] and fuzzy decision tree
[5], [20], have been proved to be effective in a range of data
analysis challenges. There have been some applications of
fuzzy systems to malware detection and classification [4], [5],
[21], [22]. The fuzzy philosophy can be reflected in the feature
extraction module and the classification module, both of which
are indispensable elements in a malware analysis system, since
the raw input is usually a binary file that cannot be processed
directly. For the feature extraction module, the extracted
numerical features can be fuzzified into linguistic terms, such
fuzzification provides an intuitive but computable description
of features. Meanwhile, the influence of noise in the data can
be minimized. For the classification module, the parameters
can be fuzzified into linguistically meaningful outputs from
which fuzzy rules can be formulated as decision boundaries
that make the decision-making more intuitive and robust.
By incorporating fuzzy sets, fuzzy rules and corresponding
modules, a system is able to yield comprehensible decision
boundaries while preserving its accuracy and robustness. Both
aspects are crucial for software security and information
forensics.

In this paper, we adopt fuzzy theory to extract and analyze
features, as well as to classify malwares. To evaluate the
scalability of a malware classification method to big data,
the VirusShare dataset, which continuously collects malwares
from the web is used in this study. We firstly extract fea-
tures from this very large collection of malwares by using
both analytic tools and linguistic statistics. By examining the
characteristics of the feature distribution, both the static and
content-oriented features are fuzzified accordingly. Then a
fuzzy random forest and a support vector machine (SVM) are
designed to classify the static and n-gram features, respec-
tively. Finally, a set of extra fuzzy decision trees are employed
following the adaptive boosting strategy to further boost the
classification accuracy and the generalization ability. The main
contributions of our work are three-fold:

1) A new static and content-oriented feature representation
are proposed for large-scale (over 200k samples) mali-
cious software classification based on fuzzy partition and
fuzzy set theory.

2) A new malware classification framework is proposed,
which consists of a fuzzy random forest and a SVM
to perform malware classification based on the fuzzified
static features and the fuzzified n-gram features, respec-
tively, followed by an adaptive boosting module using
fuzzy decision tree to generate the final classification
result. Moreover, the fuzzy rules in the proposed clas-
sification approach are explainable.

3) Empirical results obtained using a very large dataset indi-
cated that fuzzy-based systems have comparable accuracy
and a number of advantages such as interpretability and
robustness.

This paper proceeds as follows. In Section II, the back-
ground and related works are reviewed. In Section III, the
proposed method is elaborated in detail with the explanation
of the motivations behind. Experimental results and discus-
sions are presented in Section IV, and Section V draws the
conclusion.

II. RELATED WORKS

A. Malware Classification

Malware detection has long been a task of concern for
researchers. To detect whether a given executable is safe or
not is a relatively easy task for machine intelligence since
there are many available datasets of malwares such as VX-
Heaven, IoT, Ransomware [5], while the benign samples such
as DLLs are readily obtainable. In contrast, the reported works
on malware classification are relatively fewer, because very
few datasets of malware are properly labeled for researchers to
perform classification, let alone very large datasets. The most
widely referred to labeled dataset is Kaggle 2015 [9] with 10K
samples containing nine families and six categories (worm,
adware, backdoor, Trojan, TrojanDownloader and obfuscated
malware). Models with optimal performance in Kaggle almost
uniformly adopted deep learning [2], [23]. Microsoft sterilized
the dataset by erasing the PEheader of all the provided binary
files. This disables the application of some static feature ex-
traction tools that parse the PEheader, and emphasizes features
that rely on statistics from the file content. However, this
dataset can no longer be called comprehensive from today’s
point of view. Online malware dataset such as the VirusShare
dataset provides over one million malware samples each year,
which includes over 10K families and thirty categories. To
research the classification of a large volume of up-to-date
malwares, one has to fetch data from websites such as the
VirusShare dataset and label them manually.

Malware on different platforms or operating systems cannot
be handled under a unified framework due to the following
reasons: (i) Anti-malware engines for different platforms main-
tain different collections of malware categories; (ii) Software
on different platforms have different code structure, leading to
distinctive features and statistics. So far, Windows and Android
have been the platforms that the majority of hackers, security
staff and researchers focused on.

In this paper, we focus on portable executable (PE) files on
Windows operating system since their occurrence or diversity
is still dominating compared with other platforms such as
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Android and macOS. According to the AV-TEST statistics,
the ratio between the numbers of new malwares in Windows,
Android, and macOS in 2019 is roughly 1 : 0.03 : 0.0007.

B. Feature Extraction for Malware Analysis

Feature extraction for malware analysis has been studied
by the computer security community as well as the machine
learning community. Malware classification generally uses the
same set of features as in malware detection. Features from
malware can be grouped into three categories: dynamic, static,
and content-oriented features [1].

1) Dynamic Features: Dynamic features are obtained by
executing a program in a sandbox and recording its suspicious
behaviors. Some of the widely used dynamic features are
the sequence of API calls, that of the socket connections,
the list of interactive files and the network traffic statistics.
Several detection methods based on graph embedding or graph
similarity of dynamic features have been demonstrated to
be very effective [24]. However, the extraction of dynamic
features suffers from arbitrariness (testers have to manually
define the set of malicious behaviors) and high cost (need to
build a sandbox that keeps the malware unaware and safely
executes hundreds of thousands of executables) [1].

2) Static Features: Static features are obtained by parsing
an executable file instead of executing it. Representative pars-
ing tools include pefile, Peframe, disassembler software,
VirusTotal report 2, shell command lines, etc [1], [2]. For
example, pefile parses a file with the correct PE format
into an object from which informative features can be read:
the size of imported/exported resources, the number and size
of sections, the list of linked DLLs and used APIs, information
about debugging and address, etc. A disassembler compiles a
binary file to its assembly code that contains the sequence
or graph of operation which carries much information. Static
features have served as the input of backend analyzers since
the beginning of malware analysis owing to their easy acces-
sibility. According to [2], although researchers have claimed
to come up with more complex and intelligent ways of feature
extraction, static features remains to be the most discriminative
candidate. Even if deep learning models come into malware
analysis, the static features still play a central part in malware
analysis.

3) Content-Oriented Features: Apart from building a sand-
box or applying rule-based analysis, some models digest the
entire binary file as input to analyze its content without parsing
it. By using an analogy between a binary file and a multimedia
object such as a piece of text or image, deep learning models
can be straightforwardly applied. For example, by observing
the similarity between the classification of malwares from
its binary representation and the classification of an article
from its text, some linguistic models such as n-gram or
latent semantics analysis that are used in Natural Language
Processing (NLP) can be applied to malware classification.
The efficacy of n-gram features in malware detection has
been extensively studied [25] and empirically verified [2].
On the other hand, great advancement in computer vision

2https://www.virustotal.com/

suggests that compiling a binary file into a grayscale image
can preserve the information and allow the use of computer
vision algorithms. Visualization of binary file combined with
a convolution neural network yields good performance in
Kaggle and larger datasets [2], [23]. However, content-oriented
features sharply increase the size of the feature vector, where
some of them are unstable, fragile against adversarial attacks
[10], and are impossible to be understood or summarized into
formal knowledge.

C. Classifiers for Malware Classification

Many classifiers have been applied to malware detection
or classification, depending on the statistics of the extracted
features and the size of the dataset. Pai et al. [26] used clus-
tering, expectation maximization and hidden Markov models
for six-class classification on a dataset with 11,000 samples.
Souri and Hosseini [1] provided a comprehensive review of the
application of many state-of-the-art classifiers such as support
vector machine, naive Bayes classifier, random forest, and
neural network in malware classification.

With the recent success of deep learning models in many
applications, convolutional neural network (CNN) has also
been successfully applied to malware detection by interpreting
the binary file of software as an image [27]–[30], while [23]
covered its performance in malware classification. Although
the accuracy has turned out to be high according to [23], this
approach has not been widely adopted within the computer
security community for the following reasons: (i). To use
CNN, a software has to be transformed into an image, during
which process a lot of codes as well as information are lost.
The size of the digital image provides a trade-off between
accuracy and efficiency, whose optimal value is hard to define.
(ii). CNN involves much more parameters than traditional
machine learning methods, making it harder to train or to
be deployed onto terminal devices. (iii). Traditional machine
learning models usually yield decision boundary or classifica-
tion rules that reflects the relationship between the statistical
features of software. Traditionally, software engineers would
observe the API call and the dynamic behavior of a software
to determine whether it is benign or malicious. In contrast,
CNN models usually learn features that are hard to interpret
or to reason on.

Among various classifiers, the decision tree is of special
interest by being simple to implement and straightforward
in interpretation. In 2012, Adobe released a Python script
that detects malware with only several hundreds of lines that
obtained 94% accuracy on 130,000 malwares and 16,000
benign files. The model is simply an ensemble of four decision
trees(J48, J48Graft [31], PART, Ridor [32]) based on static
features extracted by pefile. Since most static features
consist of a continual spectrum of values, the node in the
decision tree is a crisp partition.

Besides traditional classifiers, fuzzy systems have also
shown their advantages in malware analysis. Zhang et al. [22]
built a dynamic fuzzy system on traditional static features for
malware detection on a dataset with 604 samples. Dovom et
al. [5] used a fuzzy pattern tree with the graphical operational
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code features to classify 22,000 malwares. Both datasets in [5],
[22] are relatively small in scale. [4], [21], [33] explored the
application of the neuro-fuzzy approach with static features to
detect Android malware and to classify Windows malware,
during which a variational procedure is adopted to better
fuzzify the features. Although [33] reported the application of
the fuzzy system to a large dataset (ten repositories from Virus
Share, over 130K malware samples), the overall classification
accuracy is relatively low compared with non-fuzzy methods
such as random forest. In summary, the previous works were
more about reporting the efficacy of applying fuzzy systems
to malware analysis rather than justifying the superiority of
such approach. In addition, the features extracted in the fuzzy
systems were confined to the static features.

Fuzzy rules, which has been widely applied in cybernetics
[34]–[36], malware detection [21] as well as classification
[33], [37], [38], is one of the most representative fuzzy based
classifiers. For a feature vector x = (x1, x2, · · · )T, a fuzzy rule
Rl indexed by l classifies x into a class Cl using:

Rl : IF (xIl,1 is FIl,1) and (xIl,2 is FIl,2) · · ·
and (xIl,Ll

is FIl,Ll
)

THEN x belongs to class Cl

with confidence CFl,

where Ll is the number of antecedents in Rl, each member
in {Il,i}Ll

i=1 identifies a component of x, xIl,i and a fuzzy set
FIl,i defined in the domain of xIl,i . Formally, Fl,i can be
embedded by a functional µIl,i that maps the domain of xIl,i
to [0, 1], and thus the fuzzy logic clause (xIl,i is FIl,i) takes
value µIl,i(xIl,i) rather than zero or unity as in Boolean logic.
Finally, the evidence provided by Rl is a combination of all Ll

antecedents, which is usually derived by a reduction operator
O:

EV(Rl, x) = CFl · O(
{
µIl,i(xIl,i)

}Ll

i=1
),

where O can be product, min, etc. Finally, a fuzzy rule-
based classifier considers the results of all J fuzzy rules
{EV(Rl, x), Cl}Jl=1 and yields a classification result.

The problem with fuzzy rules is that they cannot grow
automatically. Usually, a basic set of rules is constructed first
and then interpolation is performed to better fit the observed
data [39]. On the other hand, the fuzzy version of a decision
tree can also use fuzzy partitions as input, yet they can grow
just as normal decision trees. This gives rise to a branch of
classifiers known as a fuzzy decision tree [20], [40]–[42] that
incorporates fuzzy partition in the input.

III. THE PROPOSED METHOD

The proposed malware classification system consists of a
feature extraction module and a classification module. The first
module extracts both the static and the n-gram features from
an executable in binary form, and the latter module fuzzifies
these attributes and classifies the input into a malware category.

A. Feature Selection

When selecting the optimal combination of features for
malware classification, convenience, efficacy, interpretability,

and robustness are the four key issues that need to be consid-
ered comprehensively. Dynamic features are excluded due to
their high cost in operating time and ambiguity in extraction.
Static features are adopted for their accessibility and high
discriminative power [1].

To deal with some cases where the static features are
unavailable due to the source of the data, content-oriented
features are also used. Specifically, the n-gram features are
adopted as the content-oriented features because they are
concise, discriminative, readily applied in almost all classifiers
and can be easily fuzzified based on Hamming distance.
Features that can be fuzzified, known as fuzzy features, are
of special interest due to their robustness against noise and
lower training variances [13].

For the above reasons, the static features and the content-
oriented n-gram features are adopted to classify different
various kinds of malwares. The detailed feature extraction
approaches are elaborated as follows.

1) Static Features: To extract static features, we follow
the work of [2], [33] and select a collection of attributes
readily provided by the Python library pefile and Linux
commands size and file. Features from over 200K samples
downloaded from the VirusShare dataset 3 are collected and
are denoted as raw features. Their statistics are listed as in
Table. I.

TABLE I
RAW STATIC FEATURES

Feature Type Range

Number_Of_Sections Integer [0,40]
Size_Of_Export Integer [0,10000+]

Size_Of_Resources Integer [0,2000000+]
Size_Of_Debug Integer {0,28,56,84,112· · · 728}
Import_Address Integer [0,14000000+]

.text Integer [0,10000000+]

.data Integer [0,2300000+]
.bss Integer [0,1100000+]
.size Integer [0,20000000+]

Image_Version Integer [0,8000+]
Virtual_Size Integer [0,300000+]
.text/.size Float [0,1)
.data/.size Float [0,1)
.bss/.size Float [0,1)

From Table. I, it is observed that for a large dataset, the
values of some raw static features (or attributes) fluctuate
with a large variance. Hence, when applying classification
algorithms such as the decision tree, it would be extremely
time-consuming to examine the exact partitions for the above
attributes. Moreover, the raw static features also suffer from
heavy noise and outliers that hinder normalization. This fact
can be observed in Fig. 1. When applying a linear, uniform
normalization onto the range of [0, 1], (as shown in Fig. 1a),
almost all entries will fall into a small interval due to outliers.
By removing the top 2‰ entries with the largest values, such
severe data aggregation phenomenon still appears as shown in
Fig. 1b. This abnormality makes further partitions difficult for
the decision tree classifier, while the weight-based classifiers
are going to suffer from their normalizers.

3https://virusshare.com/
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(a) Uniform normalization. (b) Normalization with top 2‰ re-
moved.

Fig. 1. Data distribution of Size_Of_Export.

In [4], [21], the fuzzy features rather than the raw features
were adopted to represent the static attributes to deal with the
above data distribution problem. The self-organizing mapping
(SOM) algorithm was adopted to cluster the static attributes
into five linguistic fuzzy sets: very small, small, middle, big,
very big. Such treatment is an orthodox preprocessing step
for fuzzy systems. Although it helps to reduce the impact
of noise and outliers, the clustering algorithm cannot suffi-
ciently explore the complicated underlying pattern behind the
static attributes from malwares. As shown in Fig. 2, the data
distributions of a static attribute vary greatly among different
malware classes and a fixed number of clusters is obviously
inappropriate to handle the data distributions of all the malware
classes.

Fig. 2. The distribution of a normalized attribute, Size_Of_Resources,
after removing top 1‰ entries. Each sample is added with a white Gaussian
noise so the number of samples of a cluster can be observed.

Moreover, it can be observed that many attribute values ag-
gregate around some specific values (the bars in Fig. 2). Taking
data noise into consideration, the fuzzy partition is adopted to
describe the data distribution of the raw static features. A fuzzy
partition F of an attribute with domain X is characterized by
a fuzzy membership function µF : X → [0, 1]. For x ∈ X , x

is said to belong to one side of the partition F with degree
µF (x) and to the other side with degree (1− µF (x)). Since
both fuzzy rules [33] and decision tree [43], [44] yield good
performance in malware analysis, we hybridize the idea behind
these two methods by allowing fuzzy partitions of both types:
(i) less than partition x < c, which is the fuzzy version of the
ordinary partition for a continuous attribute:

µHalfspace
c,a (x) =


1, x ≤ c
a+ c− x

a
, c < x < c+ a

0, x ≥ c+ a

, (1)

(ii) equal to partition x = c, which is similar to a fuzzy logic
assertation for a discrete attribute:

µInterval
c,a (x) =



0, x ≤ c− a
a− c+ x

a
, c− a < x ≤ c

a+ c− x
a

, c < x < c+ a

0, x ≥ c+ a

. (2)

The intuitions behind (1) and (2) are better understood
by visualizing them as Fig. 3. µHalfspace fuzzifies the idea of
partitioning the domain of a specific attribute in a decision
tree, while µInterval fuzzifies the idea of selecting a value from
a discrete domain in splitting a node in a decision tree. Fuzzy
partitions also have a prominent advantage during searching
the threshold c because they only require an approximate
rather than an exact value of the threshold and the ambiguity
can be handled by the fuzziness. Note that when a → 0, (1)
and (2) degenerates gracefully into their crisp counterparts, a
crisp partition and a Dirac indicator.

1

0
Xc c+ ac− a

µHalfspace

µInterval

Fig. 3. µHalfspace and µInterval.

Remark: Only two parameters c and a are chosen to
parameterize the fuzzy partition in our method. Formally, the
shape of a fuzzy partition can be arbitrarily complex and
contain many more parameters. Some works focus on decou-
pling the correlation between features, adopting a variational
method or interpolation [21] to optimize the shape of the fuzzy
membership function. However, these are not the most crucial
variables on which this paper concentrates. So we ignore
them from comparison and interested readers can refer to the
references within to seek improvement from this perspective.

2) n-gram Features: The idea of using n-gram to classify
malware stems from topic classification or analysis of natural
language texts [45]. In a raw binary file, a character is defined
as one byte and an n-gram word is a string consists of
n successive bytes. We choose n = 4 empirically in our
work, which balances the classification performance and the
computational complexity.
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To extract 4-gram features from the dataset, we first browse
the entire training set of binary files and collect all appearing
words to form a dictionary. The top K1 most frequent words
are kept. They are then sorted by their discriminative power
and the top K2 words are adopted as keywords. The 4-gram
feature vector of an executable is a vector with K2 compo-
nents, each of which denotes whether or not one keyword
appears in it.

To be illustrative, the top 1,000 most frequent words are
treated as stop words and removed from the constructed
dictionary and K1 is set to 100, 000. The occurrence of
this set of frequent words extracted from a set of malwares
downloaded from the VirusShare dataset is shown in Fig. 4,
whose detail is presented in Section IV.

Fig. 4. The occurrence of top 100,000 frequent words.

Fig. 4 shows that the distribution of the frequency of 4-gram
words follows the pattern of the frequency of words in natural
language, i.e. following Zipf’s law [46], which is another piece
of evidence supporting using NLP models in malware analysis.

The discriminative power of a keyword w is measured by
the mutual information [47] with respect to all categories C:

I(w; C) =H|C|(Pr(C))− Pr(w)H|C| (Pr(C|w))

− (1− Pr(w))H|C| (Pr(C|¬w)) ,
(3)

where H|C| is the entropy of an information source with |C|
types of signals, Pr(C) is the probability distribution of all
categories, Pr(C|(¬)w) is the conditional distribution of all
categories in the subset of malware samples with or without
w, and Pr(w) is the proportion of executables containing w,
whose values are approximated from the empirical distribution
in the training set.

In NLP, the semantic similarity between words is used in
many linguistic tasks [48], but such similarity between words
is usually hard to capture due to the complexity of natural
languages. Meanwhile, bitwise Hamming distance serves as a
natural metric of the morphological similarity between words.
Such similarity can be adopted to fuzzify the keywords for two
reasons: (i) if two words have a shorter Hamming distance then
they could be the same command with different addresses and
thus they might have the identical utility as signatures. In fact,
models that assume such similarities (e.g. the convolutional
neural network in which the pixelwise similarity is trans-
formed into contextual similarity) have achieved state-of-the-

art performance [2], [23]; (ii) unlike static features, content-
oriented features are known to be vulnerable facing adversarial
samples. Bitwise modification can help a malware escape from
the detectoror classifier [10]. Hence, a fuzzification in word
matching can increase the cost of the attack and improve the
robustness of the model. To examine the degree of similarity
between informative words, we define the average bitwise
distance within a collection of words W as (recall that each
word contains 32 bits):

d(W) =
1(|W|
2

) ∑
w1,w2∈W

1Tw1 ⊕ w2

32
, (4)

where ⊕ is bitwise exclusive or. For the collection of top
K1 = 100, 000 frequent words, the average bitwise distance
given by (4) is d = 0.48. For the 10%, i.e. K1

10 = 10, 000, most
informative words, the distance is reduced to d = 0.45, which
demonstrates that the more informative words are more similar
to each other. A statistical hypothesis testing is conducted to
statistically validate this observation.

Hypothesis test: The average bitwise distance between
more informative words is shortened. We assume the event
that two bits are identical is subject to a Bernouli distribution
Ber(·), whose mean is given by the empirical mean on K1,
d = 0.48. The mean of the Bernouli distribution underlying
the more informative words is d′. The null hypothesis and the
alternative hypothesis are stated as follows:

H0 : d′ ≥ d,

H1 : d′ < d.

To reject H0, we construct an event with minuscule proba-
bility assuming H0 holds. The empirical mean of the bitwise
distance among the most informative words, d̄ , is the average
of N =

(
10000

2

)
× 32 pairs. We drop the dependency between

them and approximating the distribution of d̄ using central
limit theorem, so roughly:

d̄ ∼ N
(
d′,

d′(1− d′)
N

)
.

Assuming H0 then the p-value of d̄ taking value d∗ = 0.45 is
at most:∫ d∗

−∞
N
(
x

∣∣∣∣d, d(1− d)

N

)
dx = Φ

 d∗ − d√
d(1−d)

N


≈ Φ(−2400)� 0.01.

(5)

So it is safe to reject H0 and conclude that within the set
of most informative words, the average Hamming distance is
shorter so we assume that applying clustering or fuzzification
among the keywords can delete repeated patterns and incor-
porate more discriminative patterns.

Formally, we fuzzify the event word w belongs to an
executable e from the crisp indicator (whose value is e’s
component corresponding to w in its n-gram feature vector):

f(w, e) = max
w′ appears in e

{I[w′ = w]} , (6)
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where I[· · · ] is an indicator function whose value is one iff
the input statement is true, into:

ffuzzy(w, e) = max
w′ appears in e

{
I[1T(w′ ⊕ w) ≤ 2]

}
. (7)

To interprete from a fuzzy perspective, the generalization from
(6) to (7) is tantamount to generalizing the indicator of the
set containing only a single point w in the hyperspace of all
possible words to a sphere with Hamming radius ≤ 2.

In practice, we browse the list of K1 frequent words and
delete a word if its Hamming distance to a previous one
is less than three. Then the top K2 informative words are
selected from this filtered list. For an executable, its component
corresponding to keyword w in 4-gram feature vector is set to
one if there exists a word in this file with no more than two
bits different from w. This process is stated in Algo. 1.

Algorithm 1 n-gram feature extractor.
1: Input: Training set in binary form D, thresholds K1, K2,

an executable in binary form e;
2: Initialize: Dictionary = {}, vece = 0;
3: for an executable e′ in D do
4: for a word w in e′ do
5: ++Dictionary[w];
6: end for
7: end for
8: //Delete stop words.
9: Delete the top 1,000 words with the highest occurrence;

10: Save only the top K1 most frequent words;
11: //Fuzzification.
12: Delete similar words;
13: Sort Dictionary using mutual information, i.e.(3).
14: Save only top K2 words with the highest mutual informa-

tion in Dictionary;
15: for a word w′ in e do
16: for a word w in Dictionary do
17: if 1T(w′ ⊕ w) ≤ 2 then
18: vece(w) = 1;
19: end if
20: end for
21: end for
22: Output: vece.

B. The Classification Method

Considering the characteristics of the static and n-gram
features of the malware, different classifiers are designed
for each kind of features. For the static features, a fuzzy
random forest is proposed to exploit the fuzzy partitions of
the static features. For the n-gram features with a very high
dimensionality, a multi-class support vector machine (SVM)
with the radical basis function (RBF) kernel is employed
as the classifier. Then the baseline classification result is
obtained by a weighted voting over the results of each fuzzy
decision tree and that of the SVM. Finally, a set of extra
fuzzy decision trees (referred to as Ada-Trees in Fig. 5)
are constructed following the adaptive boosting strategy to
improve the classification accuracy and generalization ability.

Combining the baseline classification results with those of the
Ada-Trees, the final classification result can be derived. The
structure of the proposed classification method is given in Fig.
5.

In the following formulation, we denote the collection of
categories as C = {Cl}Ll=1, the collection of all attributes as
A = {Am}Mm=1, each Am has its possible values distribute
in domain Xm. The collection of all training samples is X =
{xn}Nn=1, where each xn is a vector of length M with its m-th
component xn,m ∈ Xm.

1) Fuzzy Random Forest: Based on the properties of the
static features discussed in the previous subsection, a fuzzy
random forest algorithm is proposed. The fuzzy decision tree
is selected as the unit classifier, in which fuzzy partitions are
adopted for node splitting. The fuzzy random forest, which
is composed of a collection of fuzzy decision trees, has the
following advantages and thus is suitable for our large-scale
malware classification task: (i) the decision tree, or random
forest were reported to have outstanding performance and scale
well with big data [49]; and (ii) decision trees explore the
feature space by conducting partitions, and thus the previous
observations about the fuzziness of data distributions in the
raw static features can be readily exploited.

To classify malwares using a fuzzy random forest based on
the static features, the following issues in defining the model
are required to be specified: the fuzzy partitions, the structure
of the forest, the growing and pruning conditions, and the
setting of hyperparameters.

The fuzzy partition has been elaborated in the previous
subsection. In order to distinguish more than two classes and
to increase the classifiers robustness against noise or missing
attributes, a set of decision trees with various sets of training
samples and candidate attributes are trained independently.

For each class C ∈ C, a set of T fuzzy decision trees
{TreeC,t}Tt=1 are trained to determine whether an input x
belongs to C or not. To train each binary decision tree TreeC,t,
a subset XC,t of X is randomly sampled such that instances
from C occupies approximately fifty percent in XC,t. To
achieve the greedy optimum in classifying XC,t, TreeC,t grows
as an ordinary decision tree with two modifications: (i) the set
of candidate attributes is a randomly sampled subset of A
for each node in TreeC,t, (ii) the ordinary crisp partition is
replaced by the fuzzy partition.

To seek the optimal fuzzy partition at node v of TreeC,t

is to find the best configuration of c and a in (1) and (2)
which minimizes the classification loss. Given c and a, the
dataset at node v, denoted by XC,t,v , is fuzzily partitioned
into two splits P1 and P2. Each x ∈ XC,t,v belongs to P1 with
a membership value of µc,a(x) and to P2 with a membership
value of 1−µc,a(x), where µ can be either µHalfspace or µInterval.
The fuzzy totality of P1 or P2 is formulated as

N1
C,t,v =

∑
x∈XC,t,v

µc,a(x), (8)

N2
C,t,v =

∑
x∈XC,t,v

(1− µc,a(x)) . (9)
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Fig. 5. The structure of the classifier for class C.

While the dominating class of P1 or P2 is given as:

C1
C,t,v = arg max

C′=C,¬C

 ∑
x∈XC,t,v

µc,a(x) · I[x ∈ C ′]

 , (10)

C2
C,t,v = arg max

C′=C,¬C

 ∑
x∈XC,t,v

(1− µc,a(x)) · I[x ∈ C ′]

 .

(11)
Hence the fuzzy number of mistaken samples in two partitions
are:

E1
C,t,v =

∑
x∈XC,t,v

µc,a(x) · I[x /∈ C1
C,t,v], (12)

E2
C,t,v =

∑
x∈XC,t,v

(1− µc,a(x)) · I[x /∈ C2
C,t,v]. (13)

The efficacy of partition c, a is measured by a fuzzy version
of entropy following [50]:

EntropyC,t,v(c, a) = H2

(
E1

C,t,v + E2
C,t,v

N1
C,t,v +N2

C,t,v

)

= H2

(
E1

C,t,v + E2
C,t,v

|XC,t,v|

)
.

(14)

Fixing c and a, the node v is splitted into two nodes v1, v2
with:

XC,t,v1
= {x ∈ XC,t,v|µc,a(x) > 0} , (15)

XC,t,v2
= {x ∈ XC,t,v|µc,a(x) < 1} . (16)

If v is a leaf node, then its inference result is

Cv = arg max
C′=C,¬C

 ∑
x∈XC,t,v

I[x ∈ C ′]

 . (17)

To prevent overfitting, the depth of each fuzzy decision tree
is restricted by a threshold T . The algorithms for constructing
a fuzzy decision tree is given in Algo. 2. Note that the fifth
line in Algo. 2 is done by a grid search, the space where no

Algorithm 2 Fuzzy decision tree.
1: Input: A malware category C, the tree index t, the set

of attributes A, the dataset for this tree X̄, the maximal
depth T ;

2: Initialize: root=
{

X̄, 0
}

, storage structure: TreeC,t;
3: Define: split(v =

{
X′, τ

}
):

4: Sample A′ from A;
5: cv, av = arg maxc∈A∈A′,a

{
EntropyC,t(c, a)

}
follow-

ing (8)-(14) using C, t,X′;
6: Save cv, av into TreeC,t;
7: Compute X1 following (15);
8: Compute X2 following (16);
9: return v1 = {X1, τ + 1}, v2 = {X2, τ + 1};

10: end def
11: node list = [root];
12: next list = [];
13: for i = 1 to T do
14: next list = [];
15: for node in node list do
16: next list.append(split(node));
17: end for
18: node list = next list;
19: end for
20: Output: TreeC,t.

less than 99.5% data lie is cut uniformly into 1000 parts, and
a takes values in {0, 0.02× c, 0.04× c, · · · , 0.2× c}.

To classify an instance x using one fuzzy decision tree
TreeC,t, x is passed through all paths in TreeC,t. This is the
fundamental difference between a fuzzy decision tree and an
ordinary decision tree. In an ordinary decision tree, a node is
passed to the leaf through one and only one path. However, in
a fuzzy decision tree, a node may go through multiple paths
from the definition in (15) and (16). The weight of one path
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v1, v2, · · · , vH is calculated as:

weight(vH , x) =

H−1∏
h=1

(µch,ah
(x))I[vh+1 corrseponds to P1 of vh]

(1− µch,ah
(x))I[vh+1 corrseponds to P2 of vh],

(18)
where vH is a leaf of TreeC,t. The inference result is derived
by a vote of all leaves of TreeC,t, i.e., x belongs to C with a
confidence using (17), (18):

TreeC,t(x) =

∑
v is a leaf of TreeC,t,Cv=C weight(v, x)∑

v is a leaf of TreeC,t
weight(v, x)

. (19)

And x belongs to ¬C with a confidence (1− TreeC,t(x, C)).
2) The Ensemble Module: Ensembling a collection of het-

erogeneous classifiers is a challenging research problem in
itself [51]–[54]. Some of the ensembling schemes are majority
voting, weighted voting as out-of-bag (OOB) vote (the weight
of a classifier depends on its performance on an unobserved
subset of training set) and dynamic voting (the weight of
a classifier explicitly depends on x). In our approach, the
dynamic voting scheme, MWLFUS2 [20], is adopted for
ensembling the fuzzy decision trees. For each TreeC,t in a
binary classification task (referred to as the classification tree),
a more shallow error tree is trained to predict whether an
instance would be mistaken by TreeC,t. The training label of
a sample x for an error tree corresponding to TreeC,t is set to
one if TreeC,t correctly classifies it and is zero otherwise. Then
the output of the error tree, wC,t(x), serves as the dynamic
weight for inference. For the SVM, a weight similar to the
form given by Adaboost is adopted as wSVM = 1

2 log
(

r
1−r

)
,

where r is the classification accuracy of SVM in the training
set. The baseline ensemble deduces that x belongs to C with
a confidence with (19):

Base(C, x) =

T∑
t=1

wC,t(x)× TreeC,t(x) + wSVM × SVMC(x),

(20)
where SVMC(x) is the output of SVM using the one-versus-
all strategy.

3) The Adaptive Boost Module: Having equipped with a
binary classifier for class C with T fuzzy decision trees
and a one-versus-all SVM, we continue to boost its ac-
curacy by adaptive boosting [55], [56] with Q extra trees
{AdaTreeC,q}Qq=1.

The weight of training samples is uniform before boosting.
To modify the weight of training samples for the q-th AdaTree,
we first compute the classification accuracy of AdaTreeC,q−1
w.r.t. the weighted samples as rC,q−1 (the baseline classifier
can be regarded as AdaTreeC,0), let

αC,q−1 =
1

2
log

rC,q−1

1− rC,q−1
. (21)

The weight of an example x is firstly multipled by a factor
exp {αC,q−1} if the previous classifier fails to correctly clas-
sify it and is shrinked by the same factor otherwise. These
weights are then normalized as a probability distribution and a
sampling procedure generates the training set for AdaTreeC,q.
This process iterates for Q rounds.

Finally, all the |C| boosted binary classifiers select the
classification result of x by incorporating (20) and extra ada-
boosting trees:

arg max
C∈C

{
Base(C, x) +

Q∑
q=1

1

2
log

(
rC,q

1− rC,q

)
AdaTreeC,q(x)

}
.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Dataset and Preprocessing

Many established models were built and verified on assorted
datasets which are manually collected and maintained. But to
actually examine a models ability to scale to actual big data
requires a much larger dataset consists of samples collected
on the fly.

Fig. 6. The ratio of ten classes in the filtered Virus Share dataset.

We evaluate our model on a large-scale dataset, the
VirusShare dataset. The VirusShare dataset collects a set
of over 34 million assorted malwares across platforms like
Android, macOS and various Windows versions. Updated mal-
wares is uploaded to the VirusShare website, so the distribution
of different malware categories is timely and realistic. We
downloaded malwares from the 340th to the 373rd repository,
and the dataset contained two million malwares and consumed
0.97TB. Files other than PE were removed. To obtain the
ground truth of the classification, we resorted to Virus Total,
which is an online malware analyzer. Virus Total takes the
uploaded file or the unique MD5 code as inputs and returns
the classification result of 72 anti-malware engines. Many
of the engines have different ways of analysis and return
diverse results. To simplify, we only parsed the outcome of the
Microsoft anti-malware engine as in [33], and the PE files that
escaped from the detection of Microsoft engine were removed.
Finally, those classes with too few instances are deleted and the
following ten representative classes are examined, including
Virus, Backdoor, SoftwareBundler, PWS, Ransom, VirTool,
Trojan, TrojanSpy, PUA and TrojanDownloader. The resulting
220K malware samples constituted the labeled dataset and the
proportion of the ten classes is shown in Fig. 6.
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Fig. 7. Information gain of the most frequent words with respect to some malware categories.

The static features were collected using pefile and linux
command line. The 4-gram features were extracted using a
Python script.

B. Discriminative Power of the Fuzzy n-gram Features

Before presenting the classification results and the com-
parisons, we briefly illustrate the discriminative power of the
n-gram features. To the best of our knowledge, the n-gram
features have not been formally analyzed in the malware
classification scenario.

Given the 4-gram words with the highest frequency of
occurrence, their information gain w.r.t. the four major mal-
ware categories, Trojan, PWS, VirTool, and Ransom, i.e. the
mutual information between the existence of the word and the
binary classification task between a category and the others,
e.g., Ransom vs. the other were computed and shown in
Fig. 7, where the 4-gram words are sorted according to their
frequency. We chose the top 50,000 most frequent words and
subsampled into 5,000 ones.

Some interesting conclusions can be drawn from Fig. 7:
1) The mutual information does not vary smoothly with

the frequency, instead, there are many clusters and sharp
cliffs in the graph.

2) The information gain of a word is different for different
classes. This reflects a fact that some class is naturally
easier to be distinguished from the others (in Fig. 7, PWS)
using the 4-gram features.

3) The discriminative powers of a word w.r.t. different
classes are positively correlated. For example, if a word
is unhelpful in distinguishing between Ransom and the
others then it is unlikely to provide information for dis-
criminating other categories as well. Therefore using (3)
instead of computing mutual information between each
category and its complementary categories is sufficient.

As a result, we adopt (3) as the metric and select top K2 =
10, 000 keywords.

(a) Statistics from the 15th keyword.

(b) Statistics from the 17th keyword.

Fig. 8. The discriminative power of 4-gram features.
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To delve into the discriminative power of a specific word,
we visualize the statistics of two words in Fig. 8. If a file
contains the word corresponding to Fig. 8a then we can readily
conclude that it is a PWS. While if a file contains the word
as in Fig. 8b then we suspect that it is very likely to be
a TrojanDownloader and less likely to be a Trojan, virus,
backdoor or a PUA and is unlikely to be of any other category.

Finally, to justify the efficacy of fuzzification of words using
(7), we evaluate the classification accuracies using SVM based
on the crisp word matching and the fuzzy word matching:

Fig. 9. Classification accuracy of SVM with original and fuzzy n-gram
features.

It can be observed from Fig. 9 that fuzzy n-gram features
result in better classification accuracy. This is since fuzzy
words grasp more discriminative patterns than original key-
words. The fuzzification of words performs an aggregation
(here aggregation is done based on Hamming distance), such
aggregation, which akin to kernel smoothing, has the effect
of smoothing noise and statistical variation, thus improving
classification performance.

C. Interpretability of the Proposed Fuzzy Random Forest

To examine the interpretability of the proposed classifier,
we illustrate the functionality of one extracted rule from the
fuzzy random forest:

IF Number_Of_Sections ≈ 8 and
Size_Of_Export ≤ 1, 000, 000 approximately and
Size_Of_Debug ≈ 0 and
.text ≤ 400, 000 approximately
THEN The input is not PWS.

The opeartion of the above rule above on a test set is visualized
in Fig. 10, the subset that satisfies the antecedents is marked in
red. It is clear that this rule correctly identifies the properties
of PWS. Compared with the decision boundary of traditional
machine learning models, this sort of fuzzy rules captures the
statistical properties of different malware categories correctly
without going too deeply into trivial numerical differences
which potentially leads to overfitting. For example, a J48
decision tree for malware detection begins with one antecedent

Size_of_Export < 211, while its fuzzy counterpart reads
Size_of_Export < 200 with confidence score a, which
enables malwares with Size_of_Export slightly higher
than 211 to be further examined.

(a) Number_Of_Sections≈ 8. (b) Size_Of_Export ≤ 1, 000, 000.

(c) Size_Of_Debug≈ 0. (d) .text≤ 400, 000.

Fig. 10. Fuzzy partitions of two representative nodes in the fuzzy forest. Each
sample is added with a white Gaussian noise so the number of samples of a
cluster can be observed.

Fig. 10a and Fig. 10c are instances of fuzzy logic node
where the partition of type (2) is adopted, while Fig. 10b and
Fig. 10d visualize instances of type (1).

D. Malware Classification Results

For each of the ten classes, we trained T = 11 independent
fuzzy decision trees. Each fuzzy decision tree grew until the
height of the tree exceeds T = 9. Each binary classification
was then adaptively boosted with Q = 4 extra trees. There are
altogether 29,710 nodes in the forest.

We present the classification accuracy obtained by the SVM
over n-gram features, the baseline classifier which combines
the SVM with the fuzzy random forest, and the boosted
classifier in Table. II as an ablation study. The corresponding
confusion matrices are shown in Fig.11.

TABLE II
CLASSIFICATION ACCURACY AT DIFFERENT STAGES OF THE MODEL.

Stage Accuracy Number of
parameters

SVM(n-gram) 81.4% 0.12M
SVM+fuzzy random forest 85.8% 0.17M

SVM+fuzzy random+adaptive boosting 90.8% 0.19M

It can be observed from Fig. 11a that some classes can be
classified well with solely n-gram features. After incorporating
the static features (Fig. 11b) and boosting classifiers (Fig.
11c), the overall accuracy is significantly improved. Unlike
the decision boundary given by SVM, the fuzzy decision trees
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(a) SVM. (b) The baseline classifier. (c) The boosted classifier.

Fig. 11. The confusion matrices obtained by different stages in the classifier. The malware categories are indexed by 1:TrojanDownloader, 2:SoftwareBundler,
3:Virus, 4:Trojan, 5:Ransom, 6:PWS, 7:TrojanSpy, 8:VirTool, 9:PUA, 10:Backdoor.

TABLE III
COMPARISION OF CLASSIFICATION ACCURACY, COMPLEXITY, AND VARIATION.

Model Ours Neuro-fuzzy [33] Artificial neural network Naive Bayes classifier

Accuracy 90.8% 26.5% 80.2% 59.1%
Number of parameters 0.19M 0.078M 1.1M 0.11M

Standard deviation 2.56% 3.68% 3.32% 1.49%

Model Logistic regression CNN [23] Random forest

Accuracy 62.2% 90.7% 73.3%
Number of parameters 0.14M 2.53M 0.15M

Standard deviation 3.02% 1.54% 1.67%

yield a quantitative insight into the data that carries accessible
knowledge.

To comprehensively evaluate the proposed approach in
malware classification, a number of well-known classifiers
that can be easily applied to the extracted features have been
investigated, which include non-fuzzy random forest, naive
Bayes classifier (using only n-gram features), artificial neural
network, logistic regression, and SVM. In addition, we also
compared with the state-of-the-art CNN-based malware clas-
sifier proposed in [23]. The CNN consists of 9 convolutional
layers, 3 pooling layers and 2 densely connected layers. The
image size of the visual feature is 448 × 448. Finally, the
neuro-fuzzy approach [33] as an application of fuzzy system
for large scale malware classification, is also compared. The
results are shown in Table. III.

It can be concluded that our approach significantly out-
performed the traditional methods. Compared with traditional
machine learning models such as logistic regression, support
vector machine or deep learning models, our method based on
decision trees can be easily interpreted by human. The decision
boundary on the fuzzy features from the SVM, together with
the fuzzy rules provided by the fuzzy decision trees yields an
accessible set of malware discrimination knowledge (such as
the exemplary rule given before,) which is highly interpretable
for human.

The CNN model achieved similar accuracy as our method,
but with much more parameters. Moreover, considering that

the visual representation of malware lacks many properties of
real images such as spatial continuity between pixels, rescaling
the visual representation to reduce computational complexity
becomes infeasible.

As reported in the original paper, the neuro-fuzzy method
[33], which is a combination of simple neural network and
fuzzy system, performs poorly with this multi-category clas-
sification task. Although it decouples the correlation between
properties by optimizing the elliptic fuzzy patch [21] and trains
27 rules, it does not consider content-oriented information
and fails to finely partition the feature space, therefore its
accuracy is relatively low. By properly accounting for statis-
tical variation and noise and linguistic impreciseness of the
extracted features using fuzzy theory, our method obtains trees
with fewer nodes compared with random forest. Finally, by
adopting a novel ensemble framework, we achieved state-of-
the-art results for malware classification.

V. CONCLUSION

This paper studied the problem of large-scale malicious
software classification. To achieve robust classification per-
formance on large collections of malwares, fuzzy partition is
applied onto the extracted static features and fuzzy matching
is adopted for the linguistic features. We proposed a composite
classifier constructed from an ensemble of support vector
machine and fuzzy random forest, adaptively boosted by fuzzy
decision trees. Our proposal is efficient, robust, and capable
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of yielding interpretable rules for identifying the malware
category. Comparison between other well-known classifiers on
a dataset with over 200k samples from the the VirusShare
dataset showed the significantly superior performance of the
proposed framework.

The experimental results shed light on the efficacy of ap-
plying fuzzy systems to large-scale malware classification. Our
algorithm can achieve good classification with interpretability,
an essential element of explainable AI. We are looking forward
to the applications of more complex and intelligent fuzzy
systems in malware analysis, particularly fuzzy systems that
can classify the interaction graph and other dynamic features.
In our future work, we will also explore ways to make our
classifier more robust against subtle adversarial attacks such
as obfuscation and mutation attacks. The eminent threat of
cyber-attack means that it is necessary and urgent to study
the attack and defense mechanism in AI-based malware de-
tection/classification systems.

REFERENCES

[1] A. Souri and R. Hosseini, “A state-of-the-art survey of malware detection
approaches using data mining techniques,” Human-centric Computing
and Information Sciences, vol. 8, no. 1, p. 3, 2018.

[2] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto,
“Novel feature extraction, selection and fusion for effective malware
family classification,” in Proceedings of the sixth ACM conference on
data and application security and privacy, 2016, pp. 183–194.

[3] P. Burnap, R. French, F. Turner, and K. Jones, “Malware classification
using self organising feature maps and machine activity data,” computers
& security, vol. 73, pp. 399–410, 2018.

[4] A. Shalaginov and K. Franke, “Automatic rule-mining for malware
detection employing neuro-fuzzy approach,” Norsk informasjonssikker-
hetskonferanse (NISK), vol. 2013, 2013.

[5] E. M. Dovom, A. Azmoodeh, A. Dehghantanha, D. E. Newton, R. M.
Parizi, and H. Karimipour, “Fuzzy pattern tree for edge malware
detection and categorization in iot,” Journal of Systems Architecture,
vol. 97, pp. 1–7, 2019.

[6] D. Bekerman, B. Shapira, L. Rokach, and A. Bar, “Unknown malware
detection using network traffic classification,” in 2015 IEEE Conference
on Communications and Network Security (CNS). IEEE, 2015, pp.
134–142.

[7] R. Perdisci, A. Lanzi, and W. Lee, “Mcboost: Boosting scalability in
malware collection and analysis using statistical classification of exe-
cutables,” in 2008 Annual Computer Security Applications Conference
(ACSAC). IEEE, 2008, pp. 301–310.

[8] S. Mohurle and M. Patil, “A brief study of wannacry threat: Ransomware
attack 2017,” International Journal of Advanced Research in Computer
Science, vol. 8, no. 5, 2017.

[9] R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and M. Ah-
madi, “Microsoft malware classification challenge,” arXiv preprint
arXiv:1802.10135, 2018.

[10] B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto,
C. Eckert, and F. Roli, “Adversarial malware binaries: Evading deep
learning for malware detection in executables,” in 2018 26th European
Signal Processing Conference (EUSIPCO). IEEE, 2018, pp. 533–537.

[11] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
“Adversarial perturbations against deep neural networks for malware
classification,” arXiv preprint arXiv:1606.04435, 2016.

[12] A. Al-Dujaili, A. Huang, E. Hemberg, and U.-M. OReilly, “Adversarial
deep learning for robust detection of binary encoded malware,” in 2018
IEEE Security and Privacy Workshops (SPW). IEEE, 2018, pp. 76–82.

[13] C. P. Chen, C.-Y. Zhang, L. Chen, and M. Gan, “Fuzzy restricted
boltzmann machine for the enhancement of deep learning,” IEEE Trans-
actions on Fuzzy Systems, vol. 23, no. 6, pp. 2163–2173, 2015.

[14] K. Shihabudheen and G. N. Pillai, “Recent advances in neuro-fuzzy
system: A survey,” Knowledge-Based Systems, vol. 152, pp. 136–162,
2018.

[15] I. Couso, C. Borgelt, E. Hullermeier, and R. Kruse, “Fuzzy sets in
data analysis: from statistical foundations to machine learning,” IEEE
Computational Intelligence Magazine, vol. 14, no. 1, pp. 31–44, 2019.

[16] L. Fang, X. Yun, C. Yin, W. Ding, L. Zhou, Z. Liu, and C. Su, “Ancs:
Automatic nxdomain classification system based on incremental fuzzy
rough sets machine learning,” IEEE Transactions on Fuzzy Systems,
2020.

[17] A. S. Shirkhorshidi, T. Y. Wah, S. M. R. Shirkhorshidi, and S. Aghabo-
zorgi, “Evolving fuzzy clustering approach (efca): An epoch clustering
that enables heuristic post pruning,” IEEE Transactions on Fuzzy Sys-
tems, 2019.

[18] M.-S. Yang and Y. Nataliani, “A feature-reduction fuzzy clustering
algorithm based on feature-weighted entropy,” IEEE Transactions on
Fuzzy Systems, vol. 26, no. 2, pp. 817–835, 2017.

[19] Q. Fan, Z. Wang, D. Li, D. Gao, and H. Zha, “Entropy-based fuzzy
support vector machine for imbalanced datasets,” Knowledge-Based
Systems, vol. 115, pp. 87–99, 2017.

[20] P. Bonissone, J. M. Cadenas, M. C. Garrido, and R. A. Dı́az-Valladares,
“A fuzzy random forest,” International Journal of Approximate Reason-
ing, vol. 51, no. 7, pp. 729–747, 2010.

[21] A. Shalaginov and K. Franke, “A new method of fuzzy patches con-
struction in neuro-fuzzy for malware detection,” in 2015 Conference of
the International Fuzzy Systems Association and the European Society
for Fuzzy Logic and Technology (IFSA-EUSFLAT-15). Atlantis Press,
2015.

[22] Y. Zhang, J. Pang, F. Yue, and J. Cui, “Fuzzy neural network for malware
detect,” in 2010 International Conference on Intelligent System Design
and Engineering Application, vol. 1. IEEE, 2010, pp. 780–783.

[23] Q. Chu, G. Liu, and X. Zhu, “Visualization feature and cnn based ho-
mology classification of malicious code,” Chinese Journal of Electronics,
vol. 29, no. 1, pp. 154–160, 2020.

[24] I. Abdessadki and S. Lazaar, “A new classification based model for
malicious pe files detection,” International Journal of Computer Network
and Information Security, vol. 11, no. 6, p. 1, 2019.

[25] E. Raff, R. Zak, R. Cox, J. Sylvester, P. Yacci, R. Ward, A. Tracy,
M. McLean, and C. Nicholas, “An investigation of byte n-gram features
for malware classification,” Journal of Computer Virology and Hacking
Techniques, vol. 14, no. 1, pp. 1–20, 2018.

[26] S. Pai, F. Di Troia, C. A. Visaggio, T. H. Austin, and M. Stamp,
“Clustering for malware classification,” Journal of Computer Virology
and Hacking Techniques, vol. 13, no. 2, pp. 95–107, 2017.

[27] B. Athiwaratkun and J. W. Stokes, “Malware classification with lstm
and gru language models and a character-level cnn,” in 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2017, pp. 2482–2486.

[28] P. Mishra, K. Khurana, S. Gupta, and M. K. Sharma, “Vmanalyzer:
Malware semantic analysis using integrated cnn and bi-directional lstm
for detecting vm-level attacks in cloud,” in 2019 Twelfth International
Conference on Contemporary Computing (IC3). IEEE, 2019, pp. 1–6.

[29] M. Kalash, M. Rochan, N. Mohammed, N. D. Bruce, Y. Wang, and
F. Iqbal, “Malware classification with deep convolutional neural net-
works,” in 2018 9th IFIP International Conference on New Technologies,
Mobility and Security (NTMS). IEEE, 2018, pp. 1–5.

[30] N. McLaughlin, J. Martinez del Rincon, B. Kang, S. Yerima, P. Miller,
S. Sezer, Y. Safaei, E. Trickel, Z. Zhao, A. Doupé et al., “Deep android
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