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Abstract

Recently, more and more researchers and medical staffs have paid special
attention to the treatment of cervical cancer due to its high lethality and
morbidity. Early screening of this disease is of vital importance. In this
paper, we propose an automatic cervical cancer screening algorithm that
analyzes the related risk factors to provide preliminary diagnostic informa-
tion for doctors. Since a number of risk factors are considered as privacies,
some patients refused to provide the corresponding information. Such severe
amount of missing attributes leads to great difficulty for many automatic
screening algorithms. To solve this problem, a Bayesian possibilistic C-means
(BPCM in short) clustering algorithm is proposed to discover the represen-
tative patterns from the complete data and to estimate the missing values of
a specific sample using its closest representative pattern. After data comple-
tion, a two-stage fuzzy ensemble learning scheme is proposed to derive the
final screening result. In the first stage, the bootstrap aggregation (bagging
in short) procedure is adopted to sample the entire class-imbalanced dataset
into a number of class-balanced subsets. In the second stage, a number of
weak classifiers are trained on each subset and a fuzzy logic based approach
is designed to analyze the classification results of the weak classifiers and ob-
tain the final class prediction. Experiments have been conducted on a dataset
containing 858 patients. From the experiment results, it can be observed that
the proposed BPCM can effectively discover the underlying patterns and is
reliable in estimating the missing attribute compared with the traditional
approaches. Moreover, by applying the proposed fuzzy ensemble learning
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scheme, the final classification results on the completed data by BPCM are
promising (an accuracy of 76% or a positive sensitivity of 79%) under the
severe missing-attribute scenario (only 6% samples with complete data).

Keywords: Cervical cancer screening, Bayesian possibilistic C-Means
clustering, Fuzzy logic, Ensemble learning, Granular computing
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1. Introduction

With the past decades witnessing the blooming development of data sci-
ence as well as bioscience, increasing efforts are now being devoted to combin-
ing the techniques in these two fields, and the results have been fruitful and
inspiring [1][2][3][4]. Apart from applying the latest learning algorithms to
biomedical data sets [5], many works were motivated by the unique challenges
that biomedical data inherited from the biological and clinical circumstance.
In the literature concerning bioscience and medical science, the challenges
that are most frequently studied include the high dimensionality [6] that re-
quires effective feature selection [7], severe class imbalance [8][9] and privacy
issue [10][11] with the consequent uncertainty [12]. The above difficulties
in biomedical data call for modifications to the classical machine learning
algorithms as well as the data mining tools for better performance.

Among various data mining tasks in biomedical contexts, computer-aided
diagnosis [25][26][29] has aroused special attention. The reason for its pop-
ularity is that computer-aided diagnosis systems can help to save lives in
countries where the medical source is still scanty, and such scantiness is
confronting many low-income countries. Existing computer-aided diagnosis
(CAD) approaches usually take advantage of machine learning. CAD uti-
lizes algorithms to process complex data, including images and unstructured
data. For example, in cancer screening, a CAD system has to process X-
ray and other scanning images [57], together with other factual data. In
a simplified setting, available data about correct diagnosis is inputted into
some learning algorithms, which will learn the pattern and make predictions
to help the doctors. Some classic learners are k-nearest-neighbours, naive
Bayes classifier, neural network [29][30], etc.; however, appropriate modifica-
tions are necessary for traditional machine learning tools to perform well in
biomedical context.

In recent years, cervical cancer has attracted much attention by being the
fourth most common cause of death from cancer in women [34][35][36]. While
there are good screening programs available in developed countries to lower
the overall mortality, seventy percent of occurrence and ninety percent of
death take place in developing countries [31]. Hence an auxiliary screening
scheme based on easily accessible factors is in urgent need. Researchers
have demonstrated that some risk factors such as sexual history, smoking
history, various symptoms of potential complications, etc. provide much
useful information in cervical cancer screening and diagnosis [32]. However,
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due to privacy concerns and other reasons, not all the above information
can be collected, which leads to great difficulties for the existing computer-
aided diagnosis approaches. To solve this problem, Fernandes K. et al. in
[27] proposed to use mean substitution to fix the missing attributes. But
this imputation approach is too blunt to yield satisfactory performance. In
addition, the work in [27] is mainly a study of sharing knowledge within
the regression models instead of improving the specificity or the accuracy of
classification in screening. A discussion about updated advances for missing
value estimation is provided in [59]. Recently, techniques had also been
developed to impute missing nominal data, such as in [60].

Some pioneering works [13][14][15] have demonstrated that granular com-
puting (GrC) can neatly handle the uncertainty and vagueness in data mining
tasks. Granular computing concerns processing collections of entities that are
formed by similarity or indistinguishability. So far, GrC, or fuzzy method-
ologies have found wide application in machine learning, ranging from the
fundamental theory aspects [17][18], classifiers aggregation [61][62] to fron-
tier applications, especially in cybernetics, expert systems, and biomedical
environments [19][20][21][22][23][24]. Their procedure usually includes gen-
eralizing a classical machine learning model to its fuzzy counterpart and
demonstrating the improvement in performance. For instance, [19][21][24]
generalized a fuzzy version of Support Vector Machine to fit specific data,
while [20][22] make use of fuzzy logic to help to make decisions. Inspired by
the granular computing (GrC) philosophy, a new algorithm is proposed in
this paper to provide accurate and robust cervical cancer screening results.
To handle the severe data incompleteness, a Bayesian version of Possibilistic
C-Means Clustering algorithm is proposed that can detect some valuable pat-
terns robustly for improved imputation. After data completion, a bagging
scheme and an ensemble module are designed for classification with class-
imbalanced data. The major contributions of the proposed algorithm are
three-folds:

1. The proposed BPCM clustering adopts the Bayesian inference frame-
work rather than the maximum likelihood criterion in the expectation
step and thus it is more robust against outliers and is more suitable to
deal with the limited data available.

2. The proposed BPCM provides a flexible membership assignment space
where data points that belong to multiple classes (i.e. points that
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cannot be clearly assigned to one class only) and outliers can be well
separated.

3. A fuzzy ensemble learning scheme is proposed, which can deal with the
class-imbalance problem and handle the uncertainties in data collection,
missing attribute completion, etc.

Hence, a reliable cervical cancer screening result can be obtained. In a data
set consisting of information provided by 858 patients, our framework can
provide screening prediction with the accuracy of 76% and the sensitivity of
79%, which are superior to the results obtained by existing methods [27].

The rest of the paper is organized as follows. Section 2 specifies the
challenges in the studied data set. Section 3 proposes the BPCM clustering
algorithm. Section 4 describes the details of the bagging and fuzzy rule
ensemble modules. Section 5 presents the experiment results, where attention
is focused on the comparison between clustering schemes dealing with the
missing attributes. Section 6 concludes the paper.

2. Challenges and Attempts

2.1. The missing attribute problem

Although there have been CAD frameworks for cervical cancer based on
visual information [58]. There remains one major problem in cervical cancer
screening in the risk factor collection process. Since questionnaires concern-
ing cervical cancer factors often involve queries on some private information
such as number of sexual partners, pregnancy status and other gynecological
diseases, very few participants are willing to provide all the related infor-
mation. Moreover, the informative imaging methods might not always be
feasible, thus a screening framework that is not dependent on image data
will have a practical advantage. For example, in the dataset [27][28], only
6% of participants provided complete data and most of the data lack at least
two components. In the worst case, some participants provide almost no
informative component. Hence, missing data overwhelm the data set of cer-
vical cancers risk factor provided by [27]. Among all the thirty-two features,
the most frequent missing attributes are the time since the first/last sexu-
ally transmitted disease (STD) diagnosis, which were ignored by over 90% of
surveyed subjects. Around 12% of the subjects decided not to provide any
information about their STD situation, which caused ten to thirteen missing
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attributes in their corresponding feature vectors, leaving little information
to be exploited. Table 1 list some risk factors for several patients.

Table 1: An example of missing attributes in the risk factor data set, where N/A denotes
the missing attributes.

Patient
Number

Age
Number of
pregnancies

Smoking
status

Hormonal
contraceptives

usage

Number
of STDs

Time since
first STD
diagnosis

Time since
last STD
diagnosis

1 44 N/A True False 0 N/A N/A
2 41 4 False True 1 21 21
3 36 3 N/A True 0 N/A N/A
4 34 3 False N/A N/A N/A N/A
5 36 2 False True 0 N/A N/A

In order to deal with the missing attributes, three single-value imputation
methods can be used [38]:

1. Mean imputation/substitution: This kind of approaches use the average
value of all the valid data of a specific attribute to fill the missing
entries;

2. Regression imputation: These approaches assume that data are subject
to a linear/polynomial pattern. However, in cervical cancer screening,
many attributes are of Boolean values, which hinders this kind of solu-
tions;

3. Hot-deck imputation: By assuming a distance metric or a generative
distribution over the data set, this family of approaches estimates the
missing attributes by assigning a most probable value based on the
inherent data distribution obtained from the complete data. Various
kinds of clustering approaches have been widely used in hot-deck im-
putation, including hard/crisp C-means (HCM) clustering [31], fuzzy
C-means (FCM) clustering [33], etc. A brief review of the clustering
approaches is provided in Appendix Appendix A.

In the cervical cancer screening task, the hot deck imputation approaches are
more popular because they can both estimate the missing value and provide
informative knowledge about the inherent data distribution.
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2.2. Missing attribute estimation based on data clustering

Fixing missing attributes by data clustering usually consists of the follow-
ing two steps: First, perform clustering on the complete data set and adopt
the converged cluster centroids as the representative patterns that depict the
inherent structure of the entire data set. Second, for any data with missing
attributes, the closest centroid is found based on the known attributes, then
the missing values are filled with the corresponding components from that
centroid. Generally speaking, the missing value estimation accuracy depends
on the performance of the clustering approach.

For the cervical cancer dataset [27], finding the representative patterns
from the complete data is a non-trivial task. The major difficulties can be
summarized as follows:

1. Noise and uncertainty in data collection: Owing to some subjective
(e.g. misremembering certain information) and objective facts (e.g.
slipping of the pen in the questionnaire), the collected data may have
noise and uncertainty which brings obstructions for deterministic clus-
tering approaches such as the Hard C-Means (HCM). Moreover, some
noise and uncertainty in data will create outlier samples, which will pre-
vent the clustering algorithms to discover the underlying representative
patterns;

2. Limited data: The number of complete data counts for a mere 6%
of the entire dataset, this limitation calls for highly robust cluster-
ing algorithms. Since most clustering methods, e.g. Fuzzy C-Means
clustering (FCM) and Possibilistic C-Means clustering (PCM) adopt
iterative search in their optimization procedure, how to derive robust
and stable clustering results with various initializations becomes an im-
portant problem, especially when the number of samples for clustering
is limited.

To overcome the difficulties mentioned above, a new data clustering algo-
rithm based on the Bayesian theory and the fuzzy theory is proposed, which
is named as BPCM. The proposed BPCM has the following characteristics
that help to handle the mentioned problems in estimating missing attributes.

1. A soft clustering algorithm is designed to model the noise and uncer-
tainty in the collected data. Specifically, to be robust against outliers,
the possibilistic membership constraints in PCM is adopted to reduce
the influence of outliers.
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2. A Bayesian formulation is adopted to obtain the cluster centroids, i.e.
the representative patterns, during which the number of clusters is au-
tomatically determined. This formulation makes BPCM robust against
random initializations even with limited data.

With the above two properties, the proposed BPCM is able to provide reliable
representative patterns for the risk factors related to cervical cancer. In
the next Section, a detailed description of the proposed BPCM algorithm is
presented.

3. The Proposed Bayesian Possibilistic C-Means (BPCM) Cluster-
ing

To extract representative patterns from the limited complete data, a
Bayesian possibilistic C-Means clustering approach has been designed, which
combines the merits of possibilistic membership constraints and Bayesian es-
timation. Notations of the frequently used variables are listed in Table 2.

Table 2: Summary of mathematical notations.

Notation Meaning

xi A vector representing the i-th original observation, xi ∈ X .

X X = {x1,x2, · · · ,xNS
}, where NS is the number of samples.

cj The j-th centroid of X.

C C = {c1, c2, · · · , cNC
},where NC is the number of clusters.

ui,j The membership of the i-th observation to the j-th cluster.

ui ui = (ui,1, ui,2, · · · , ui,NC
)T, ui ∈ U

U U = {u1,u2, · · · ,uNS
}.

d d : X × X → [0,∞) is a measure of distance.

3.1. Derivation of the optimal cluster centroids

To obtain a robust estimation of the underlying representative patterns
within the limited observation data, the Bayesian estimation is adopted. The
Maximum Likelihood (ML) criterion is employed, which aims to maximize
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the conditional probability p(X|C). By introducing the membership distri-
bution U, the conditional probability can be reformulated as,

p(X|C) =

∫
p(X,U|C)dU =

∫
p(U|C)p(X|C,U)dU

=

∫
p(U|C)

NS∏
i=1

p(xi|C,ui)dU,

(1)

where p(U|C) is a prior distribution and can be taken as a constant with
uninformative prior applied [32]. Such kind of target function is usually
optimized using the Expectation-Maximization (EM) routine [32]. In the
E-step, the expectation of the latent variable U is computed, and in the M-
step, the local-maxima of the log-likelihood is obtained with the membership
distribution fixed. Similar to the definitions in the Gaussian mixture model
(GMM) [32], we have:

p(xi|C,ui) =
1

Z(C,ui)

NC∏
j=1

exp {−d(xi, cj)}ui,j , (2)

in which

Z(C,ui) =

∫ NC∏
j=1

exp {−d(xi, cj)}ui,j dxi. (3)

Note that different from the settings in GMM, the constraint on ui,j is
relaxed from one-hot coding to a general ∀i, j : ui,j ∈ [0, 1]. Computing the
normalization term Z w.r.t C and ui requires an integral over all possible
value of xi which is usually done by sampling methods.

In the E-step, the membership distribution over U can be regarded as
the posterior distribution and is computed as:

p(ui|xi,C) =

1
Z(C,ui)

∏NC

j=1 exp {−d(xi, cj)}ui,j · p(ui)∫
1

Z(C,vi)

∏NC

j=1 exp {−d(xi, cj)}vi,j · p(vi)dvi
, (4)

where the integral in the denominator is also done by sampling. Given the
membership distribution in (4), the negative log-likelihood in the M-step can
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be formulated as:

− ln p(X|U,C) =

NS∑
i=1

NC∑
j=1

ui,j · d(xi, cj) + f(C)

≈
NS∑
i=1

NC∑
j=1

ui,j · d(xi, cj).

(5)

Compared with the dominating term, the term f(C) in (5) is neglectable
(a brief proof is given in Appendix Appendix B). Then, the conditional log-
likelihood p(X|U,C) is solely determined by d(xi, cj) and gradient-based
methods such as steepest gradient descent can be adopted to optimize (5)
w.r.t C .

In summary, the algorithm of the proposed BPCM is given in Algorithm
1.

Algorithm 1 The pseudo-program of BPCM

Require: X = {xi}NS

i=1 ∈ XNS , NC , U = [0, 1]NC , p(U), ε
Ensure: p(U|X) and C

1: Sample a sequence of {uk}Kk=1 according to p(U) in U ;

2: Sample a sequence of {xl}Ll=1 in X ;

3: Random initialize C(0), t = 0;
4: while NOT (t ≥ 1 AND ||C(t) −C(t−1)|| ≤ ε) do
5: for all xi in X do
6: Compute the posterior p(ui|xi,M(t)) on {uk}Kk=1, during which

Z(C(t),uk) has to be clarified for each k by (3), the average is taken
on {xl}Ll=1 ∪X.

7: Substitute ui,j in (5) with their posterior expectations
8: end for
9: Optimize (5) w.r.t. C, save as C(t+1).

10: t++;
11: end while

To integrate out xi, a distribution over X is necessary, which is approx-
imated by X together with L extra samples. In practice, it is convenient
to set L = 0, so we do not intentionally introduce additional samples in X
besides what have been observed. When sampling on the membership vector

10



space, the sampling points are evenly distributed along each dimension, i.e.
a uniform sampling is adopted, hence K = ( 1

∆
)NC , where ∆ is the step along

each dimension of U .

3.2. Properties of BPCM

In this subsection, some properties of BPCM are presented to illustrate
its effectiveness in missing attribute estimation.
Property 1.BPCM will converge properly after a number of iterations.

Proof. Formulating with a variational approach, the log-likelihood of the
data set X w.r.t C is given by,

ln p(X|C) =

∫
q(U) ln

{
p(X,U|C)

q(u)

}
dU + KL {q(U)‖p(U|X,C)} , (6)

where q denotes an arbitrary distribution over the membership distribution
U and KL {·‖·} denotes the ordinary Kullback-Leibler divergence between q
and the posterior distribution over U. Expanding the first term in (6), we
have, ∫

q(U) ln

{
p(X,U|C)

q(u)

}
dU = H(q) + Eq[ln p(X,U|C)], (7)

where H(·) denotes the differential entropy and Eq[·] is the expectation taken
w.r.t the distribution q. In the E-step, the KL divergence is minimized, and
in the M-step, the expectation is maximized, which guarantees the lower
bound of the likelihood w.r.t C is monotonously increasing. Hence, BPCM
will converge to a local optimum of ln p(X|C) w.r.t C.

Property 2.BPCM is a generalized version of HCM, FCM, PCM, and
GMM.

Proof. In Table 3, the major differences among HCM, FCM, PCM, GMM,
and BPCM are illustrated. To show that BPCM generalizes HCM, FCM,
PCM and GMM, it is sufficient to show that it generalizes previous models
from the membership space and the E-step optimization method.

The membership space in PCM and BPCM is a maximal one which in-
cludes the ones used in HCM, FCM, and GMM according to the derivations
in the previous subsection. Hence it can degenerate into the rest cases and
is more general.
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Table 3: Major differences among the five models.

Model Membership space E-step

HCM One-hot, {0, 1}NC Local optimum

FCM {0, 1}NC ⊂ FCM’s ⊂ [0, 1]NC Local optimum
PCM Complete, [0, 1]NC Constrained local optimum

GMM One-hot, {0, 1}NC Expectation
BPCM Complete, [0, 1]NC Expectation

For the E-step, the expectation over possible membership vectors in GMM
and BPCM is a generalized version of the local maximization w.r.t the mem-
bership distribution in HCM, FCM, and PCM. Replacing the computation
of the expectation by setting the membership to the value with the highest
confidence yields the traditional local optimum solution.

Property 3.BPCM is capable of avoiding the null membership assignment.
This property is equivalent to the statement that for some data sample, in
the E-step of each iteration, a non-null membership assignment is more likely
to be assigned a higher confidence. To formally address this statement, the
following lemma is introduced:

Lemma. For every ε > 0 and u∗ = u + ε · 1j, there exists δ, such that
for any x, d(x, cj) < δ implies p(x|u∗) > p(x|u), where 1j denotes a one-hot
vector with its j-th component to be 1.

Proof. By applying the membership vectors u and u∗ to (2) and (3), we have,

p(x|u∗)
x|u

=
Z(u)

Z(u∗)
· exp {−d(x, cj)}ε , (8)

Z(u)

Z(u∗)
= ρ > 1, (9)

where (9) is derived by comparing each term involved in the integral. Com-
bining (8) and (9), it is suggested that by selecting any δ < ln ρ

ε
, then for any

x, d(x, cj), the inequality p(x|u∗) > p(x|u) holds. This completes the proof
of the lemma.
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Now we turn to the proof of Property 3. Without loss of generality, we
prove for the first component.

Proof. For the null membership assignment u = 0 and a non-null assignment
u′ = (ε, 0, · · · , 0)T, when the data sample is close to the first centroid c1, i.e.
d(x, c1) < δ(ε = 1, j = 1), we have p(x|u′) > p(x|u). Since an uninformative
prior on the membership space is assumed, we have p(u) = p(u′). Combining
this result with the Bayesian formula, the property is derived, i.e.

p(u|x) =
p(u)p(x|u)

p(x)
<
p(u)p(x|u′)

p(x)
= p(u′|x). (10)

Which completes the proof.

Property 4:BPCM can assign proper membership values for overlapping
samples and outlier samples.

Proof. Without loss of generality, the total number of clusters is set to 2.
By applying Property III iteratively with ε = 1 for both clusters we ob-
serve that an overlapping sample with distances to both centroids lower
than a threshold mini=1,2 {δ(1, j)} will have its confidence in u = 1 higher
than u = 0, while an outlier with distance to both centroids larger than
maxi=1,2 {δ(1, j)} will has the confidence u = 0 higher than u = 1.

Remark: This is a remarkable distinction between BPCM and other
models listed in Table 3. An outlier is an observation that is distant from
other observations and is more likely to be generated by noise [33]. An
overlapping sample is an observation which is not an outlier but has similar
distances to multiple cluster centroids. In data clustering, the outlier samples
are preferred to be assigned very small membership values for all the clusters
and the overlapping samples are preferred to be assigned large membership
values to the clusters close enough and small membership values to the rest.
In FCM and GMM, since the distances between the outlier samples and
all the cluster centroids are similar (a large value), they will likely to be
assigned a membership vector of ( 1

NC
, 1
NC
, · · · , 1

NC
)T in the E-step, which will

influence the estimation of the cluster centroids. Moreover, outlier samples
and overlapping ones are indistinguishable.

To illustrate the membership assignment by BPCM for these two kinds
of data points, we assume NC = 2 for simplicity and analyze the synthetic
butterfly dataset shown in Figure 1. The membership distributions of several
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data points by the proposed BPCM in the E-step are demonstrated with
heatmap in Figure 2, where the preference for possible weight is illustrated
by hues.

(a) The butterfly data.

0
1

2

3

4
5

6
7

8

9

10

11
12

13
14

15

(b) The indexed butterfly data.

Figure 1: The indexed butterfly data set, where the 4-th and 11-th data points are the
cluster centroids.

It is interesting to note that for the data point 7 and 15, their distance to
both centroids are the same, and thus FCM, PCM, and GMM would treat
them equally in the E-step. However, the proposed BPCM distinguishes
them by assigning the highest confidence to u7 = (1, 1)T and u15 = (0, 0)T,
since the grids (1, 1) and (0, 0) attracts the highest confidence in Figure 2 (c)
and (d) respectively. Hence, BPCM successfully distinguishes the overlapping
samples and the outliers and assign appropriate membership values for them.
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(a) Membership distribution for the 1st data.(b) Membership distribution for the 4th data.

(c) Membership distribution for the 7th data.(d) Membership distribution for the 15th
data.

Figure 2: Heat maps that reflect the confidence assigned to different areas in the member-
ship vector space. (a)-(d) denotes the assignment for points indexed 1,4,7,15, respectively.
The vertical and horizontal axes denote the memberships to the clusters centered at the
4th and the 11th observation respectively.
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3.3. Missing attribute estimation by BPCM

The missing attribute estimation procedure is illustrated in Figure 3,
where Ω represents the data clustering algorithm adopted), it includes the
following steps:

1. Perform data clustering on the complete data subset and obtain the
representative patterns (in the form of centroids);

2. For any data sample in the incomplete data subset, find its closest cen-
troid based on the provided components in the sample vector. Assign
the missing values with the corresponding component in the centroid;

3. Combining the complete data subset and the incomplete data subset
after missing value estimation, the completed data set is derived.

Note that the mean substitution is covered by this framework by setting the
number of clusters to one.

Original
data set

Incomplete
data

Complete
data Centroids

Ω

Completed
data set

Figure 3: The flowchart of missing attributes estimation.

4. Classifier Design

With the data completed, the cervical cancer screening reduces to a clas-
sification task, i.e., the patients are divided into two categories: positive
(likely to have cervical cancer) or negative (unlikely to have cervical cancer).
In this stage, there are still two major problems yet to be solved. First, in
general, the data set is class imbalanced, i.e., for all the patients, the positive
samples are much less than the negative samples. For example, in [27], the
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positive samples count for about 12% of the total samples. Directly training
a classifier on such severely imbalanced data will not yield good results. Sec-
ond, the completed data contain much noise and uncertainty, which may be
generated during the collection and missing data estimation stage. Hence,
how to handle uncertainty is another important issue in classifier design.

To solve the two problems above, a fuzzy ensemble learning approach is
designed, which adopts a bagging strategy to generate class-balanced sub-
datasets and a fuzzy logic based ensemble module to comprehensively analyze
the classification results from each weak classifier and make the final decision.
Denote the entire training set by XΩ, where the subscript Ω represents the
data clustering algorithm adopted. The proposed classification approach runs
as follows and its flowchart is given in Figure 4 and Figure 5, where the red
arrows in Figure 5 indicate that every input on the end is delivered to every
receiver on the head.

XΩ

Sample

DΩ
T

DΩ
2

DΩ
1

......

Train

Weak

learner

C1

Weak

learner

C2

Weak

learner

CK

......

CΩ
1,T CΩ

2,T
...... CΩ

K,T

CΩ
1,2 CΩ

2,2
...... CΩ

K,2

CΩ
1,1 CΩ

2,1
...... CΩ

K,1

............

Figure 4: The bagging module.

1. Data sampling : As shown in Figure 4, a series of subsets with class-
balanced samples are sampled from the entire training dataset XΩ and
are denoted by DΩ

1 , D
Ω
2 , · · · , DΩ

T (where T is the number of subsets
and Ω denotes the algorithm used to fix the missing attributes). In
each subset DΩ

t , 80% of the positive samples in XΩ are randomly se-
lected to construct the positive constituents and the similar number of
negatives are selected from XΩ to construct the negative counterpart,
which makes DΩ

t a relatively balanced subset. Note that there is no
overlapping negative sample in different subsets.
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DΩ
t

Input

CΩ
K,1

CΩ
2,1

CΩ
1,1

...

...

...

CΩ
K,t−1C

Ω
K,tC

Ω
K,t+1

... CΩ
K,T

CΩ
2,t−1C

Ω
2,tC

Ω
2,t+1

... CΩ
2,T

CΩ
1,t−1C

Ω
1,tC

Ω
1,t+1

... CΩ
1,T

............

σmax

σmin

σave

σmax

σmin

σave

σmax

σmin

σave

DΩ
t ’s

meta-
data

......

......

......

All
T

meta-
data Fuzzy

rule
ensemble

Figure 5: The metadata generating module and the ensemble module.

2. Weak learner training : For each subset DΩ
t (1 ≤ t ≤ T ), a series of

weaker learners are trained on the data distribution in DΩ
t , denoted by

CΩ
1,t, C

Ω
2,t, · · · , CΩ

K,t (where K is the number of weak learners).

3. Meta-data generating : As shown in Figure 5, for the k-th weak learner,
there are overall T classifiers trained from each subset, which are de-
noted by CΩ

k,1, C
Ω
k,2, · · · , CΩ

k,T . The bagging [50][51] algorithm is adopted
to obtain the final estimation by combining the classification results
from all the classifiers based on a specific combining strategy. Differ-
ent combining strategy will result in different results. In the proposed
approach, three kinds of combining strategies including maximum, min-
imum and average combining are adopted, denoted by σmax(·), σmin(·)
and σave(·), respectively. The meta-data for the samples in the t-th
subset DΩ

t based on the k-th weak learner is given by the combined
classification outputs using all the combining strategies, i.e.
σmax, σmin, σave(C

Ω
k,1, · · · , CΩ

k,t−1, C
Ω
k,t+1, · · · , CΩ

k,T ). Note that according
to [49], when generating the metadata for a specific subset, the weak
learner trained on itself should be excluded from the combining classi-
fier set. Finally, for any observation in (DΩ

1 , D
Ω
2 , · · · , DΩ

T , ), its meta-
data contains 3×K combined classification results.
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4. Ensemble learning module by fuzzy logic: Inspired by [52][53], the fuzzy
IF-THEN rules filter is selected as the ensemble learner to handle the
uncertainty in XΩ. For any sample x in XΩ, the fuzzy IF-THEN rule
takes the form of

Rule R: IF (z1 is A1) and (z2 is A2) and ... and (zV is AV )
THEN x belongs to class LR with a confidence CF (R),

where z1 to zV denote the specific components selected from xs meta-
data, V is the number of components in xs meta-data considered
(V ≤ 3K). According to [37], in many cases, V = 1 yields a satis-
factory result with high computational efficiency and thus this param-
eter setting is adopted in the proposed algorithm. A1 to AV are the
corresponding antecedent fuzzy set for z1 to zV . Specifically, we use
the five-partition form of an antecedent fuzzy set. A strong partition
with the triangular fuzzy set is adopted, with the algebraic form of the
membership function given in (11) and its function curve in Figure 6

A1(z) = 1− 4z, (0 ≤ z ≤ 1

4
);

A2(z) =

{
4z, (0 ≤ z ≤ 1

4
)

2− 4z, (1
4
≤ z 1

2
)

;

A3(z) =

{
−1 + 4z, (1

4
≤ z ≤ 1

2
)

3− 4z, (1
2
≤ z ≤ 3

4
)

;

A4(z) =

{
−2 + 4z, (1

2
≤ z ≤ 3

4
)

4− 4z, (3
4
≤ z ≤ 1)

;

A5(z) = −3 + 4z, (
3

4
≤ z ≤ 1).

(11)

Figure 6: The antecedent fuzzy set membership function adopted.
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The intensity of the condition of sample x following the rule R, denoted
by µR(x), is computed by:

µR(x) =
V∏
v=1

Av(πv(x)), (12)

where π(·) is a projection operator that selects a specific component from
the meta-data. Then the corresponding class label for rule R is determined
by the overall intensity of samples in both classes, i.e.,

LR = arg max
l∈{0,1}

{ ∑
x∈Class l

µR(x)

}
. (13)

Intuitively, (13) measures the level that a rule is supported by a class l
(l = 0/1 denotes the positive/negative class, respectively) and the rule R is
assigned with the class label LR with a higher overall support.

The confidence for rule R is measured by how firmly R yields its answer,
where the entropy formulation is adopted:

CF (R) = 1 +
∑
l=0,1

∑
x∈Class l µR(x)∑

x µR(x)
· log

{∑
x∈Class l µR(x)∑

x µR(x)

}
. (14)

Then the discriminative power of the rule R is measured by a score for-
mulated as:

Score(R) = CF (R) ·
∑

x∈Class LR

µR(x). (15)

Finally, top H rules with the highest scores are kept into the final ensem-
ble classifier. Note that for any class l, at least one rule with LR = l should
be included to guarantee that all the labels can be assigned, and thus H ≥ 2
in our case.

For a test sample xtest with completed attributes, the output of every
weak learner (there are overall K×T weak learners) is computed. Using the
three kinds of combining strategy, the meta-data for the test-sample can be
derived, which contains 3 ×K components. For each rule R in the H rules
with the highest discriminative power, the samples consistency to the rule is
calculated as µR(xtest) · CF (R). Then the test sample is assigned the class
label LRopt , where Ropt is the rule with the highest consistency.
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5. Experiments and Discussions

5.1. Experiment setups

To evaluate the performance of the proposed algorithm in cervical can-
cer screening, the dataset in [27] is adopted as the studied target. For each
patient in the dataset, there are overall twenty-seven risk factors recorded,
including age, sexual experience (3 factors), smoking history (2 factors), in-
trauterine device (IUD) and hormonal contraceptives usage (2 factors), sex-
ually transmitted disease (STD) related (13 factors), STD diagnosis time
(2 factors), and previous cervical diagnosis (4 factors). Among all the risk
factors, sixteen factors are Boolean variables and the rest are real variables.
Before the subsequent processing, all the real variables are normalized by a
linear transform to ensure that 95% of the values fall in the range [0, 1].

In the classification stage, two kinds of metrics are adopted to evaluate the
classification performance: the accuracy and the positive sensitivity, which
are defined as follows,

accuracy =
TP+TN

TP+FN+FP+TN
, (16)

positive-sensitivity =
TP

TP+FN
, (17)

where TP/FP denotes true positive/false positive, i.e. the number of sick/healthy
patients classified as positive (sick) samples; TN/FN denotes true nega-
tive/false negative, i.e. the number of sick/healthy patients classified as
negative (healthy) samples.

5.2. Evaluations on missing attribute estimation

To comprehensively evaluate the performance of the proposed BPCM al-
gorithm in missing attribute estimation, the mean substitution [27] and the
FCM algorithm were used for comparison. Note that the estimation results
by the PCM and HCM algorithms were unstable, i.e., they varied much with
different initializations. Hence, they were excluded in the subsequent classifi-
cation procedure. In addition, the total number of clusters in BPCM was set
to eight and the converged number of clusters was four. It is interesting to
note that in FCM, setting the number of clusters to four resulted in the rel-
atively best performance among other possible choices. This demonstrates
that the proposed BPCM algorithm can potentially determine the correct
number of patterns of the data analyzed.
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Figure 7: The flowchart of the measuring of imputation effect.

To evaluate the missing attribute estimation performance, all the samples
in the complete dataset is divided into two sets, i.e. the training set and the
test set. The training set contains 80% samples and it is used to provide the
required information for the mean substitution, FCM, and BPCM algorithms.
The test set contains the remaining 20% samples and to simulate the samples
with missing values. A number of attributes (from 10% to 50% with a step
of 10%) for each sample in the test set are randomly erased. Then the
missing attribute estimation performance is measured by the mean squared
error (MSE) between the estimated values and their corresponding ground
truths. As in Figure 7, the procedure is repeated for five times as a 5-fold
cross-validation and the average result measured in MSE and running time
is reported in Figure 8.

Figure 8: The missing attribute estimation performance by the three approaches investi-
gated.
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Figure 8 shows the missing attribute estimation performance with the
three approaches investigated. From the figure, it is observed that:

• The average MSE increases monotonically with the percentage of miss-
ing values for all the three approaches investigated;

• The mean substitution approach performs well for samples with fewer
missing attributes and the performances drop drastically with the in-
crease of missing attributes. It is mainly because, without adequate
information, the estimation based on a simple averaging operation can-
not be accurate and robust. In such a scenario, the clustering based
algorithm can provide better estimation results;

• The proposed BPCM algorithm can always achieve the lowest MSE,
which has demonstrated its effectiveness in missing attribute estima-
tion.;

• Compared with the other two methods, BPCM has the longest running
time due to the exhaustive search in membership space with time com-
plexity O(NSNC( 1

∆
)NC ) exponential to the number of clusters in each

iteration, where ∆ is the sampling step along each dimension. However,
this could be reduced by applying Monte-Carlo Markov Chain methods
instead of uniform sampling, which will be further investigated in our
future work.

To show that the proposed BPCM can discover the underlying data struc-
ture and extract meaningful patterns, the following instance was analyzed.
Considering the three risk factors including STDs: condylomatosis (the 9th
component), STDs: vulvo-perineal condylomatosis (the 12th component),
STDs: syphilis (the 13th component), the converged centroids of the FCM
and BPCM are given in Table 4. To delve into the differences, we project
the centroids onto each pair of attributes, the results are given in Figure 9.

From Table 4 and Figure 9, it is observed that the BPCM has learned
the following useful patterns among the attributes. First, the ninth and the
twelfth attribute have a strong correlation as shown in Figure 9 (a), which
implies that in the dataset, if a patient was infected by condylomatosis, the
specific category was very likely to be the vulvo- perineal condylomatosis.
Second, as shown in Figure 9 (b) and (c), the ninth/twelfth attribute also has
a strong relationship with the thirteenth attribute. For BPCM, the projected
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Table 4: Converged centroids by FCM and BPCM.

Model Centroid 9th component 12th component 13th component

FCM 1 0.21 0.48 0.15
2 0.46 0.09 0.03
3 0.33 0.39 0.49
4 0.04 0.23 0.21

BPCM 1 0.65 0.63 0.20
2 0.03 0.03 0.94
3 0.02 0.09 0.09
4 0.03 0.13 0.14

(a) The 9th and the 12th components. (b) The 9th and the 13th components.

(c) The 12th and the 13th components.

Figure 9: Illustration of the centroids extracted by FCM and BPCM.
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points fall close to (0, 0), (0, 1) and (1, 0), since these three attributes are
innately Boolean ones, the figure indicates a mutually exclusive relationship.
That is to say, if a patient was infected by condylomatosis, she was very
unlikely to be infected by syphilis and vice versa. However, such patterns
are not observed in the centroids extracted by FCM, as in Table 4, FCM
tends to yield a mediocre result that contains less decisive information for
Boolean attributes.

To examine the correctness of the above patterns explored by BPCM, we
have browsed the dataset and computed the following conditional probabili-
ties:

p
(

(x(9),x(12)) = (1, 1)|(x(9),x(12)) 6= (0, 0)
)

= 97.7%,

p
(
x(9) = 0|x(13) = 1

)
= 93.7%, p

(
x(12) = 0|x(13) = 1

)
= 93.7%,

p
(
x(13) = 0|x(9) = 1

)
= 97.7%, p

(
x(13) = 0|x(12) = 1

)
= 97.7%,

(18)

where x(m) denotes the m-th component of x. And (18) indicates that the
data distribution is in accordance with the patterns that BPCM discovered.

5.3. Classification performance of the weak learners

The performance of the weak learners was measured using a 10-fold cross-
validation procedure. The dataset with the completed attributes was first
separated into ten subsets. For each fold, nine subsets are merged and sam-
pled into a balanced training set. Then it is input into the weak learners.
The classification result of the test set was recorded. To account for pos-
sible bias in the selection of the training samples, the entire procedure was
repeated for five times and there were overall 5×10 = 50 sets of experiments
considered.

During each test, three kinds of weak learners (K = 3), including the
naive Bayes classifier [54] with continuous variables, the k-nearest-neighbor
[55] with k = 5, and the logistic regression algorithm [56] were adopted.
Since the training sets at this stage were balanced, only the accuracy metric
is adopted for evaluation.

Table 5 compares the classification performance using a single weak learner
on the completed data with the three kinds of missing attribute estimation
approaches. Each entry in Table 5 is a summarized result from fifty experi-
ments. From the table, it is observed that for the nave Bayes classifier, the
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Table 5: Average and optimal performance of basic classifiers on data subsets.

(Average/Optimal) Mean FCM BPCM

Naive Bayes 63%/66% 57%/65% 61%/65%
kNN (k=5) 59%/71% 63%/71% 64%/80%

Logistic regression 54%/59% 57%/64% 60%/62%

mean substitution approach achieves the best performance. We confer that
it is due to the reason that the nave Bayes algorithm classifies a sample by
comparing its distance to the centers of two classes. For the clustering based
missing attribute estimation approaches, the completed data are gathered
around multiple (four) centroids, which may confuse the nave Bayes classi-
fication algorithm. Even so, the classification accuracy by BPCM is com-
parable to that obtained by mean substitution. On the other hand, for the
kNN and logistic regression, the performance on the completed data by the
BPCM algorithm usually outperforms those on the data set completed by the
other two approaches. The highest classification result on the class-balanced
subsets was obtained by the kNN algorithm on the BPCM completed dataset.

5.4. Classification performance by the fuzzy ensemble learning algorithm

In this subsection, the classification performance using the fuzzy ensemble
learning algorithm is evaluated. A 5-fold cross validation is adopted, i.e., 80%
of samples in the dataset/sub-dataset are used for training the classifier and
the remaining 20% of samples are used for testing. The same experiment
is repeated for five times and the average results are recorded. To select
an appropriate number of rules, various choices of H was examined and the
classification performance in terms of the accuracy and positive-sensitivity is
given in Figure 10(a) and (b) respectively.

From the figure, the following points can be observed:

1. There is a trade-off between the accuracy and positive-sensitivity and
thus for different kinds of applications, different numbers of rules should
be adopted. In general high positive-sensitivity is preferred because we
would like to discover the potential cervical cancer patient as early as
possible and H=4 is the most proper setting;

2. The missing value estimation by BPCM always outperforms the other
two algorithms investigated, which demonstrated the effectiveness of
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(a) The accuracy(%) to H. (b) The sensitivity(%) to H.

Figure 10: Classification performance by the fuzzy ensemble leaner using various selections
of H.

the proposed approach;

3. The proposed approach can achieve a relatively high accuracy and sen-
sitivity in cervical cancer screening.

6. Conclusion

Cervical cancer is a high-death-rate disease that threatening womens
health. Computer-aid diagnosis systems for early detection of this disease
without the help of experienced doctors is in urgent demand, especially in
developing countries. However, due to the privacy concerns and noise in data
collection, the related risk factors obtained from the questionnaires usually
contain much uncertainty, which brings great difficulty for accurate and ro-
bust diagnosis. To solve this problem, a complete solution based on the
fuzzy theory is proposed in this paper and it can well handle the severe un-
certainty in data collection. A new kind of fuzzy clustering algorithm, i.e.
the BPCM, is proposed to extract the representative patterns from the lim-
ited complete data for missing attribute imputation. Then, a fuzzy ensemble
learning scheme is designed to learn the inherent rules between the completed
risk factor and the class label (positive or negative) under a high level of un-
certainty. Experiment results on a dataset with 858 patients have shown the
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effectiveness of the proposed solution. The proposed approach can achieve
an accuracy of 76% and a sensitivity of 79% in cervical cancer screening.
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Appendix A. A Review of Classic Clustering Algorithms

The ordinary model-based clustering algorithms minimize a loss function
of the form:

L(X,U,C) =

NS∑
i=1

NC∑
j=1

ui,j · d(xi, cj). (A.1)

The joint optimization of U and C makes a global optimum unattainable,
thus a two-step iterative optimization is used, where U and C are optimized
in turn: while when U is optimized, C is fixed and vice versa.

The essential difference between some mainstream model-based clustering
algorithms is the constraint exerted upon U, which can be summarized in
Table A.6:

Table A.6: Constraint on exerted by some classic clustering algorithms.

Algorithm Constraint

Hard C-Means ∀i, j : ui,j ∈ {0, 1} ,
∑NC

j=1 ui,j = 1

Fuzzy C-Means
[40][41]

∀i, j : ui,j ∈ [0, 1],
∑NC

j=1 u
p
i,j = 1, p ∈ [0, 1]

Possibilistic C-Means
[42][43]

∀i, j : ui,j ∈ [0, 1],
∑NS

i=1(1− upi,j)
1
p = 1, p ∈ [0, 1]

Though these forms of constraint were not explicitly stated in the proposal
of the corresponding algorithms, they can be obtained straightforwardly by
renaming the parameters or treating the regularizer as the Lagrange multi-
plier that reflects extra conditions.

The robustness against noise in FCM is a derivation of the constraint∑NC

j=1 u
p
i,j = 1, which reduces the attraction of ambiguous points to centroids

as illustrated in Figure A.11, where we consider NC = 2 case. If one data
is as likely to belong to cluster one as to cluster two, then its total impact

ui,1 + ui,2 is reduced to 21− 1
p ≤ 1.

But this setting makes FCM perform poorly when there appear to be
severe overlapping in data. To relax the constraint to ∀i, j : ui,j ∈ [0, 1]
would provide the most expressive ability, however, this results in a trivial
optimum U = 0 for (A.1). This reasoning gave birth to the constraint exerted
by PCM.
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Figure A.11: The potential value of u in FCM, NC = 2, p = 0.5.

However, PCM suffers from its arbitrariness in constraint form and its
over-sensitivity to initialization, and there have been various studies on this
topic [44][45][46] From a perspective of statistics learning, this pathology is
a form of overfitting, which should be able to be compensated by a Bayesian
approach. The reason why model-based clustering algorithms instead of den-
sity [47] or kernel [48] based ones are adopted is that only model-based ones
are capable of yielding a fuzzy result, which is more suitable to handle un-
certainty.
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Appendix B. A Note on (5)

We show that the residual f(C) in (5) is relatively trivial compared with
the first term

∑NS

i=1

∑NC

j=1 ui,j · d(xi, cj) when a gradient-based optimization
of C is adopted.

Formulate the exact form of f(C) by combing (2) and (3) with (5):

f(C) =

NS∑
i=1

lnZ(ui,C) (B.1)

Taking the gradient of − ln p(X|U,C) w.r.t cj yields:

∂

∂cj
{− ln p(X|U,C)} =

NS∑
i=1

ui,j ·
∂

∂cj
d(xi, cj) +

∂

∂cj
f(C)

=

NS∑
i=1

ui,j ·
∂

∂cj
d(xi, cj) +

NS∑
i=1

1

Z(ui,C)

∂

∂cj
Z(ui,C)

=

NS∑
i=1

ui,j ·
{

∂

∂cj
d(xi, cj)−

∫
p(x|ui,C) · ∂

∂cj
d(x, cj)dx

}
(B.2)

It turns out that the gradient term ∂
∂cj
d(x, j) introduced by f(C) have

coefficient p(x|ui,C). In the ideal setting, for all i, the conditional probability
p(x|ui,C) should have its model at xi, leaving the integrand p(x|ui,C)· ∂

∂cj
to

be close to zero at x 6= xi. Thus, the integral
∫
p(x|ui,C) · ∂

∂cj
d(x, cj)dx can

be reduced to Constant· ∂
∂cj
d(xi, cj). Summarizing over i = 1 to NS yields the

result of (B.2) as (1 − Constant) ·
∑NS

i=1 ui,j ·
∂
∂cj

which makes no significant

difference from (5) when we are to set it to zero. This is tantamount to
dropping f(C) and expect that the dominating terms in the first term are
sufficient to yield the optimal C.
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