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Abstract—Cerebrospinal fluid imaging models turn out to be 

a promising computer aided diagnosis technique. Current models 

can efficiently and correctly identify numerous categories of cells 

within a slice image of cerebrospinal fluid. Training a 

cerebrospinal fluid imaging model, especially a deep neural 

network, requires vast amount of data. Collecting necessary data 

for medical tasks is an expensive process, during with many 

experts, devices, and privacy concerns have to be involved. 

Therefore, it is crucial to protect such models from piracy and 

reselling. In this paper, we study the problem of intellectual 

property protection of deep cerebrospinal fluid imaging models. 

We adopt backdoor-based watermarking as the ownership 

evidence and propose a semi-distillation framework to embed the 

watermark into the model. The proposed scheme can verify the 

ownership of the genuine author, hence provide robust and 

unforgeable protection over deep cerebrospinal fluid imaging 

models. 
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I.  INTRODUCTION 

With the development of artificial intelligence (AI) in the 
computer vision (CV) domain, many AI models have been 
proposed for medical discipline, where image is the major 
source of information.  Processing medical image had been a 
tedious job, yet only well-trained medic staff are capable of 
conducting it. For example, doctors have to observe the 
patient’s lung from the chest radiographs. In leukemia 
diagnosis, doctors have to count the number of leukocyte from 
the patient’s spinal fluid. The task of analyzing cerebrospinal 
fluid images is an important emerging challenge. On one hand, 
cerebrospinal fluid turns out to be an informative source of 
diagnosis, from with some difficult illnesses were finally 
identified [1]. On the other hand, the number of categories of 
cells appear in cerebrospinal fluid is large, and the density of 
cells varies across different domains. These facts increase the 
difficulty in designing AI models for cerebrospinal fluid image 
processing, especially cell segmentation and counting.  

Unlike traditional CV discipline in which the performance 
of models is evaluated on established datasets, in computer 
aided diagnosis (CAD), the datasets are hardly published 
[2][3][4]. The reasons behind this phenomenon are:  

•  Collecting and labelling medic images is much more 

expensive than general images of animals, faces, or appliances. 
Since the former has to be assisted by medical equipment and 
experts. Therefore, few facilities are willing to share their data 
for free. 

• The medical images are inherently involved with patient’s 

privacy. Unauthorized publishing might turn out to be a threat 
to patient’s interest. 

Although images are hidden, the CAD models can be 
published and shared among facilities to boost the medical 
service [2][3][4]. However, a CAD model, e.g., a deep 
cerebrospinal fluid imaging model, is confronted by various 
types of model piracy. Since CAD models contain the 
contributions of many parties involved in data collecting, 
processing, and model tuning, they should be protected as 
intellectual properties. Protecting AI models is usually realized 
by watermarking, during with the evidence of the author’s 
identity is embedded into the model. Although there have been 
numerous watermarking schemes for ordinary image 
classification models, it remains difficult to directly apply 
existing watermarking schemes onto deep cerebrospinal fluid 
imaging models for three reasons: 

• Medical models are uniformly deployed as API services, 

so a majority of the current watermarking schemes, namely the 
white-box watermarking schemes, cannot be adopted. 

• The output of deep cerebrospinal fluid imaging models 

consists of cell segmentation, classification and counting, 
among which traditional backdoor cannot be inserted, so most 
black-box watermarking schemes fail as well. 

•  Deep cerebrospinal fluid imaging models have heavy 

post-processing modules, so many watermarking schemes that 
significantly modify the backbone structure might damage the 
models’ overall performance. 

Given those challenges, we propose a unified framework 
for protecting deep cerebrospinal fluid imaging model by 
watermarking. To enable piracy detection in the worst case (i.e. 
the author/notary only has the black-box access to the pirated 
model), we insert backdoor as the watermark. To minimize the 
influence of the watermark on the model’s performance, we 
design a semi-distillation paradigm, during which a part of the 



backbone neural network architecture is tuned to learn the 
backdoor without forgetting the normal images. The 
contribution of this paper is three-folded: 

• We formulate the threat model for intellectual property 

protection of CAD models. 

• We design a watermarking scheme for deep cerebrospinal 

fluid imaging model. 

• Experiments demonstrated the correctness and reliability 

of our proposal. 

The paper proceeds as follows: in Section II we introduce 
the backgrounds of deep cerebrospinal fluid cell imaging 
model and deep neural network watermarking schemes. In 
Section III we propose our method. Experiments and 
discussions are provided in Section IV. Finally, Section V 
concludes the paper. 

II. BACKGROUNDS AND RELATED WORKS 

A. Deep cerebrospinal fluid cell imaging model 

As shown in Fig. 1, a typical cerebrospinal fluid cell image 
contains numerous categories of cells including: erythrocyte, 
leukocyte, lymphocyte, etc. 

 

Figure 1.  A cerebrospinal fluid cell image. 

The number of these cells is a representative indicator of 
certain diseases. Since identifying and counting cells from 
cerebrospinal fluid slice is expensive regarding manual effort, 
many AI models, especially deep neural network (DNN) based 
models, have been designed to automatize this procedure. A 
deep cerebrospinal fluid imaging model usually consists of 

three modules: the convolutional neural network (CNN) 
backbone, the predictor module, and the post-processing 
module [5].  

Given a cerebrospinal fluid image, the CNN backbone 
firstly maps it into numerical features. Then the predictor 
module locates and identifies the cells, and besieges candidate 
bounding boxes around them. Finally, the post-processing 
module selects the optimal bounding boxes, counts the number 
of each category of cells and returns the report. The entire 
process is demonstrated in Fig. 2. 

The CNN backbone is usually instantiated as the classical 
neural network architecture in CV tasks, e.g., residual networks 
as ResNet-50, ResNet-101 [6]. As for the predictor modules, 
Fast RCNN is usually adopted as the bounding box predictor 
while Cascade Mask RCNN is usually adopted as the mask 
predictor [7]. The bounding box predictor locates bounding 
boxes around targets, while the mask predictor is in charge of 
identifying the pixels that belong to the object of interest. 
These components are uniformly borrowed directly from the 
CV community, since object detection and semantic 
segmentation of images have been studied for a long time. 
Meanwhile, the post-processing module for cerebrospinal fluid 
cell image analysis requires extra effort to design. Unlike 
ordinary images, cerebrospinal fluid cell images are usually 
extensively crowded, i.e., many cells appear densely within a 
small region inside the image. Even though there are methods 
specifically designed for crowded images, they can hardly 
adapt to cerebrospinal fluid cell images. Traditional post-
processing methods such as the Non-Maximum-Suppression 
(NMS) might decrease the model’s overall performance by 
miscalculating the number of cells. To cope with this dilemma, 
Hierarchy-NMS (H-NMS) [5] has been proposed to merge 
candidate bounding boxes in a more intelligent manner. By 
making use of the semantics within the hierarchy structure in 
the candidate bounding boxes for cerebrospinal fluid cell 
images, H-NMS significantly increases the backend 
performance of current deep cerebrospinal fluid cell imaging 
models.  

B. Deep neural network watermarking 

To verify the author of a DNN model, researchers adopted 
watermark, which is designed to protect the multimedia objects 
as intellectual properties. The reasons behind this choice are (1) 

 
 

Figure 2. A deep cerebrospinal fluid cell imaging model. 

 



like multimedia objects, DNN models are usually uploaded 
onto public channels. (2) DNN models are semantically 
invariant under slight distortion as other multimedia objects.  

Watermarking schemes for DNN model can be classified 
into two categories: the white-box schemes and the black-box 
schemes. If the author and the notary have white-box access to 
the possibly stolen model, then the watermark can be encoded 
into the model’s weights and intermediate outputs [8], such 
schemes are known as the white-box schemes. Otherwise, 
when the author and the notary can only interact with the 
suspicious model with an oracle/API then the backdoor-based 
watermarking schemes are preferred. Backdoor is originally an 
attack against DNN, where some triggers belong to the input 
domain evoke specific outputs that are beyond the original task. 
Conversely, the author can insert specific backdoor into its 
DNN model as its identity proof [9][10]. 

III. THE PROPOSED METHOD 

A. Motivation 

We consider the black-box setting as the underlying threat 
model. On one hand, DNN models for medical are usually 

deployed as online API services. On the other hand, the black-
box threat model is strictly stronger than the white-box 
counterpart, hence the model’s security under this scenario is 
more challenging. We design a backdoor-based watermarking 
scheme for deep cerebrospinal fluid imaging models. Since the 
post-processing modules of such models are usually fixed 
algorithms from which no gradient can be returned, we insert 
the backdoor into the intermediate output of the model. In this 
way, the triggers first evoke specific outputs from the CNN 
backbone, and thence the final outputs. In order to reduce the 
impact of the watermark on the model’s overall performance, 
we propose a two-stage training process. The first stage is the 
normal training phase during which the entire model learns the 
correct labeled and annotated images. While in the second 
phase, a semi-distillation procedure is adopted to embed the 
triggers into the intermediate configurable layers while 
preserving the DNN’s normal behavior. 

B. Details 

The overall framework is illustrated in Fig. 3. 

Recall that the network architecture consists of a CNN 
backbone, a bounding box predictor, a mask predictor, and a 

 
Figure 3 (a).  The normal training process. 

 
Figure 3 (b). The watermark embedding process by semi-distillation. 



post-processing module. In the first phase illustrated by Fig. 3 
(a), the network is trained to minimize the joint loss with: 
bounding box location loss, mask location loss, classification 
loss, etc. 

 

where (x,y) denotes an image with its label, W is the parameters 
within the entire model,  and  are the loss from bounding 
box location and mask location respectively. The loss is 
evaluated as a function of W. Once such computing graph is 
established, back-propagation can be conducted to reduce the 
loss w.r.t. W. This gradient-descend process results in a clean 
DNN model for cerebrospinal fluid image analysis.  

In the second phase illustrated by Fig. 3 (b), we freeze the 
parameters in the predictors and feed trigger images into the 
CNN backbone, it is expected that the outputs of the CNN 
backbone on triggers are randomized/null, while those on 
normal images remain the same as in the first phase. Therefore, 
the second phase is tantamount to minimize the following loss: 

 
where  is the regularizing factor, (x’z’) denotes a trigger and a 
randomly generated intermediate feature. The first term of this 
loss function regulates the deviation between the watermarked 
model and the clean one. This loss can be realized as the term-
wise l-2 norm. The second term in the loss function forces the 
CNN backbone to output desired results for trigger images.  

Finally, to verify its ownership over a pirated model (which 
is assumed to be deployed as an API), an author submits the 
triggers to the model and record the outputs. The triggers, 
although visually similar to normal images, are going to result 
in mistaken intermediate output from the CNN backbone, and 
hence incorrect final outputs. Since a model trained without the 
author’s watermark embedding process would not recognize 
these triggers as abnormal inputs, the assigned outputs would 
not appear. Therefore, this procedure can verify the author’s 
ownership over the model even if only the black-box access is 
available.  

The reason behind this semi-distillation method (by semi 
we emphasize that we do not distillate the entire model, as in 
the ordinary sense, from the output of its last layers) is that the 
CNN backbone has the most redundancy in parameterization, 
while inserting backdoors into other modules can potentially 
damage the entire model. Meanwhile, distillation from the final 
layers of the entire model is intractable due to the specialized 
post-processing modules.  

IV. EXPERIMENTS AND DISCUSSIONS 

We implemented all models, watermarking schemes, and the 

training processes under the PyTorch [11] framework. To tune 

the DNN models, we used Adam gradient-descend algorithm 

as the optimizer. The normal training process terminates when 

the model’s performance on the validation set become stable. 

During the embedding stage, we merge triggers into the 

dataset of normal images and fine-tune the entire model. 

A. Settings 

We adopted ResNet-101 as the CNN backbone, Fast 
RCNN as the bounding box predictor, Cascade Mask RCNN as 
the mask predictor, and Hierarchy-NMS as the post-processing 
module. For the task of cerebrospinal fluid cell image analysis, 
we collected 800 clinical images as the dataset, among which 
80% served as the training set, 20% as the test set. As for 
trigger images, we exerted an extra stamp on normal images as 
Fig. 4 to produce N triggers. The designed output for trigger 
images of the ResNet-101 backbone is a random numerical 
vector. For training acceleration, we adopted GeForce 2080 Ti 
for GPU computing.  

 
Figure 4. Trigger image. 

B. Ablation studies 

To examine the impact of the exerted watermark on the 
model and quantify the trade-off between security and 
performance, we adopted different configurations for λ, N and 
collected the model’s performance on cerebrospinal fluid cell 
image analysis and the reliability of the backdoor in the 
following Table 1. In order to evaluate the model’s 
performance on the image segmentation and counting, we used 
mAP metrics. To evaluate the reliability of the backdoors, we 
observed the output of the model on new images exerted with 
the trigger stamp to see whether the output had been 
invalidated.  

TABLE I.  MAP FOR NORMAL IMAGES/TRIGGERS UNDER DIFFERENT 

COMBINATIONS OF Λ AND N. 

/N 50 100 150 200 

0.1 0.71/0.38 0.71/0.21 0.70/0.10 0.68/0.05 

0.5 0.70/0.25 0.68/0.18 0.67/0.07 0.63/0.03 

1 0.69/0.13 0.65/0.09 0.59/0.03 0.48/0.02 
 

From Table 1, we observed that larger λ and N generally 
resulted in worse performance yet high verification accuracy 
(since the model’s performance on the triggers are poor, the 
ownership is justified). This is a reflection of the trade-off 
between security and performance. 



C. Comparison 

To elaborate the advantage of the proposed framework over 
established watermarking schemes for deep neural networks, 
we compared our proposal with MTL-Sign [8], and Zhang et 
al.’s [9], the later is a representative backdoor-based 
watermarking scheme for the black-box setting. To use this 
scheme, we generated white noise as triggers and assigned 
random masks and bounding boxes as the labels.  The results 
are demonstrated in Table 2. For each watermarking scheme, 
we tuned the model until the ownership verification can 
successfully pass.  

TABLE II.  MAP FOR NORMAL IMAGES UNDER DIFFERENT 

WATERMARKING SCHEMES. 

Scheme/Metric AP AP50 AP75 APs 

Ours 0.59 0.65 0.63 0.70 

MTL-Sign 0.23 0.34 0.33 0.34 

Zhang et al. 0.03 0.04 0.04 0.01 
 

As can be observed from Table 2, weight-based schemes or 
state-of-the-art backdoor-based schemes cannot maintain the 
performance of the watermarked model. Instead, they appear to 
be a threat at the model’s overall correctness. 

It is expected that watermarking as an additional security 
mechanism does not damage the model’s performance on 
normal inputs. Therefore, our proposal achieved the optimal 
results for all metrics. 

V. CONCLUSION 

Considering the expense of build CAD systems, 
specifically deep cerebrospinal fluid cell imaging models, we 
put forward the problem of protecting them as intellectual 
properties. After reviewing the threat model in this question, 
we design a novel framework that improves the ordinary 
backdoor-based watermarking schemes. By adopting a semi-
distillation paradigm, the watermarking scheme exerts less 
impact on the model’s normal performance. So the proposed 
framework can serve as a promising candidate in model 
protection for deep cerebrospinal fluid cell imaging models. 
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