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Abstract

With the wide application of deep learning models, it is im-
portant to verify an author’s possession over a deep neu-
ral network model, e.g. by embedding watermarks and pro-
tect the model. The development of distributed learning
paradigms such as federated learning (FL) raises new chal-
lenges for model protection. Apart from the independent ver-
ification of each author’s ownership, the author collaboration
should be able to recover its participant’s identity against
adaptive attacks and trace traitors. To meet those require-
ments, we propose a watermarking protocol, Merkle-Sign,
for deep neural networks protection in FL. By incorporating
state-of-the-art watermarking schemes and the cryptological
primitive designed for distributed storage, this protocol meets
the prerequisites for ownership verification in FL. Our work
paves the way for generalizing watermark as a practical se-
curity mechanism for protecting deep learning models in dis-
tributed learning platforms.

Introduction
Deep neural networks (DNN) are intelligent systems that
provide services by learning from data and consuming enor-
mous computational resources. With more emerging appli-
cations, their reliability and security are gaining more atten-
tion. A crucial task in artificial intelligence security is to pro-
tect DNN models as intellectual properties (IP) by proving
authors’ ownership.

Having observed that DNN models share similar proper-
ties with multi-media objects (broadcast transmission and
semantic invariance under slight modifications), researchers
resorted to watermark, which protects the integrity for multi-
media objects. Different kinds of redundancy within DNN
models, such as parameter representation, outputs of inter-
mediate layers, and backdoor triggers can be exploited to
encode the author’s identity as watermarks.

Modern paradigms of model training and distributing
such as Federated Learning (FL) (Li et al. 2020) raise new
challenges for DNN watermarking. In FL, authors sharing
different local datasets collaborate to train a model. As a re-
sult, the final product contains the contribution of all the au-
thors. Such an organization results in a different threat model
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and ownership verification requirements, increasing the dif-
ficulty in model protection for FL.

Being confronted with all these challenges, we propose a
unified DNN watermarking framework that meets the prac-
tical security requirements for FL. The proposed framework
adopts a watermarking scheme and a public verification pro-
tocol to ensure unforgeable and robust ownership proof. We
prove that such a scheme meets the requirements for FL
listed above. Apart from the top-level protocol, our design
puts forward more requirements for the underlying water-
marking schemes. To the best of our knowledge, this is the
first proposal for provable ownership protection in the FL
scenario. The contributions of this paper are:
• We formulate security requirements for FL, a practical

scenario for secure machine learning.
• A protocol for ownership verification, Merkle-Sign,

is proposed to meet all the requirements for FL. We also
design a new watermarking scheme, ATGF, to increase
the applicability of Merkle-Sign.

• Experiments demonstrate the utility of the proposed
framework and examine the capability of established wa-
termarking schemes in FL.

Backgrounds and Preliminaries
DNN watermark
LetMclean be a model trained to fulfil a primary task Tprimary.
The author embeds its identity information into the model,
which can later be revealed. A watermarking scheme WM =
{Gen,Embed} consists of one module for identification key
generation, key ← Gen(1N ), and one for key embedding
(MWM,verify) ← Embed(Mclean,key), where N is the
security parameter. When the author finds that its model has
been stolen, it provides {key,verify} as its evidence. If
verify agrees with key concerning the suspicious model
then the author’s ownership is proven. Such proof can be
conducted and announced by a trusted third party, yet it in-
troduces extra security risks and a tremendous burden to the
center. Instead, as (Mengelkamp et al. 2018), the proof as a
service can be done in a public and decentralized manner so
any party agreeing a consensus protocol can participate (Li,
Wang, and Alan 2021). The legitimate OV outcome is voted
across the entire community to defend against potential con-
spiracy and perjury.



Watermarks are usually backdoors (Zhang et al. 2018;
Adi et al. 2018) for the black-box setting. Adversarial sam-
ples (Le Merrer, Perez, and Trédan 2020) and out-of-range
samples (Li et al. 2019), have been adopted to generate back-
door triggers. The white-box watermarking schemes are pi-
oneered by (Uchida et al. 2017), which embeds the owner’s
digital signature into the model’s weight (Liu, Weng, and
Zhu 2021). Deep-Sign (Darvish, Chen, and Koushanfar
2019) builds the watermark on the intermediate output of
the DNN on certain samples. MTL-Sign (Li and Wang
2021) models watermarking embedding as an extra learn-
ing task. Yet most proposals of DNN watermarking over-
looked the top-level protocol for key generation and verifi-
cation. A practical watermarking protocol must include both
the bottom-level watermarking scheme and the top-level OV
protocol.

A DNN watermarking scheme has to satisfy the following
basic security requirements.

Correctness The author can prove its ownership correctly:

Pr {verify(MWM,key) = 1} ≥ 1− ε,
where ε is a negligible function of the security parameter N .
The following unambiguity condition also needs to hold:

Pr {verify(MWM,key
′) = 1} ≤ ε, (1)

in which key′ 6= key is the adversary’s key.

Functionality-preserving The watermarking cannot sub-
stantially decrease the model’s functionality, i.e., the perfor-
mance of MWM should be similar to that of Mclean.

Security against tuning The adversary can tune a model
on its local dataset or prune neurons. Such tuning could ruin
schemes like the reversible watermark (Guan et al. 2020).
A watermarking scheme is secure against tuning if tuning
cannot invalidate the verification.

Covertness The watermark should be hidden from the ad-
versary. A necessary condition for the watermark’s covert-
ness is: the parameters of MWM should not deviate from
those of Mclean too much (Wang and Kerschbaum 2019).

Security against overwriting An adversary can embed
its watermark into the model and redeclare the overwritten
model as its product. The redeclaration can only be solved
by authorizing the time-stamp correlated with the DNN ar-
chitecture and the identification under a high-level OV pro-
tocol (Li, Wang, and Alan 2021).

Federated learning
Federated Learning (FL) (Yang et al. 2019) associates a
broader range of data sources while preserving the pri-
vacy of each participant. A collection of K participants
U = {uk}Kk=1 and an aggregator A cooperate to train a
model. During the entire procedure, each author only com-
municates with the aggregator through an encrypted chan-
nel. The aggregator distributes the model M to all authors.
Each author uk independently computes the direction to
which the model should evolve w.r.t. its local datasetDk and
transmits the gradient ∆Mk back. The aggregator collects

the feedback from all authors, updates the model direction∑K
k=1 |Dk| ·∆Mk, and starts the next round. Model aggre-

gation can also be homomorphic encryption-based weighted
average, etc (Bonawitz et al. 2017).

Current studies on the security of FL focus on data protec-
tion against curious or malicious aggregators or authors (Wei
et al. 2020). Literatures on model protection in FL are rel-
atively scanty besides the persistency against malicious au-
thors during watermarking (Atli et al. 2020).

Security Requirements
Requirements for OV in FL
Apart from the ordinary demands, the FL setting gives rise
to extra security requirements as Fig. 1 and Fig. 2.
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Figure 1: Security requiremetns of OV in FL: independency,
privacy-preserving, and traitor-tracing.
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Independency When FL terminates, each author uk holds
an evidence pair (keyk,verifyk). After the trained model



Table 1: Dependence of the advanced requirements on basic security requirements.

Advanced
requirements

Basic security requirements

Correctness. Functionality-
preserving.

Security against
tuning. Covertness. Security against

overwriting.

Independency. Relevant Relevant Irrelevant Irrelevant Relevant

Privacy-preserving. Relevant Irrelevant Irrelevant Relevant Irrelevant

Traitor-tracing. Relevant Relevant Relevant Relevant Irrelevant

Recovery. Relevant Relevant Irrelevant Irrelevant Irrelevant

M is published, it is necessary that:

Pr {verifyk(M,keyk) = 1} ≥ 1− ε.

So uk can independently prove its contribution inM without
informing any other parties.

Privacy-preserving For author us 6= uk, no information
about uk’s identity, especially keyk, appears in us’s per-
spective when interacting with the aggregator. Formally, us
cannot succeed in decepting verifyk.

Traitor-tracing Watermark can trace unauthorized re-
selling in DNN commercialization (Xu et al. 2020). In FL,
a traitor may participate in a few epochs of training, obtain
the intermediate model, then claim the current model as its
product. The aggregator supervising the FL training process
and the collaboration of honest authors in the decentralized
setting should be able to identify the traitor.

Recovery Once uk proves its ownership overM , an eaves-
dropping adversary might conduct the spoil attack (Li,
Wang, and Alan 2021) to invalidate this proof. Given the
shared interest and cooperation in property protection from
all collaborating authors, it is expected that uk’s co-authors
can recover uk’s ownership over M . Hence removal uk’s
watermark is insufficient to disprove uk’s ownership.

The dependency of these four advanced requirements on
the basic security properties is presented in Table. 1.

Requirements for the watermarking scheme in FL

The underlying watermarking scheme for DNN IP protec-
tion protocol should have: (i) large capacity to incorpo-
rate the evidence for each author, (ii) efficient embedding
so leaving evidence for traitor-tracing is feasible. A DNN
model’s watermark capacity w.r.t. WM and the decline of its
performance δ, capδWM is defined as follows:

Definition 1: capδWM, is the maximal number of keys that
can be correctly embedded by WM into the model until the
model’s performance drops by δ w.r.t. the metric E defined
by its corresponding primary task.

capδWM measures the upper bound of the number of correctly
embedded watermarks inside a model. Formally, capδWM is

the maximal q satisfying the following conditions:

(M1,verify1)← Embed(Mclean,key1),

(M2,verify2)← Embed(M1,key2),

· · ·
(Mq,verifyq)← Embed(Mq−1,keyq),

E(Mq) ≥ E(Mclean)− δ,
where all q watermarks can be correctly verified. Deeper
DNNs model should have the larger capacity since the wa-
termark usually modifies only a small number of parameters.

The Merkle-Sign Framework
Motivation
To reduce the cost of authorization and traffic, we take the
merit of Merkle-tree, a data structure for integrity verifica-
tion in cloud storage (Li et al. 2013). Merkle-tree allows par-
tial authentication of a subset of its input, this property forms
the basis for independent verification and recovery.

Merkle-Sign for FL
Our protocol, Merkle-Sign, operates as Algo. 1 and is
visualized in Figure 3. In which Merkle is a Merkle-tree
combinator. The aggregator A is responsible for embedding
the identity information of all authors into the final DNN
model. To ensure that all evidence is valid and the decrease
of the model’s performance is upper bounded by δ, it is nec-
essary that capδWM ≥ (K + 1).

To trace the traitor, the intermediate model MWM,k sent
to uk contains a surveillance key, key†k. This key is only
known to A, from which it can identify the traitor.

In Merkle, h1 maps any legal key, verify, or info
into {0, 1}r, while h2 is a collision resistant hash func-
tion that maps {0, 1}2r into {0, 1}r. Operator Merkle
maps each component of its input by h1 then organizes the
mapped values into a binary tree with h2 as illustrated in
Fig. 4. Concretely, h1 for keyk in the 7th and the 13th
line in Algo. 1 is a digital signature scheme, Enck(h0(·)),
where Enck is an encryption module using uk’s private
key, and h0 is a preimage resistant hash function. A third
party can examine whether a given keyk corresponds to
w = h1(keyk), which are part of the evidence submitted
by uk during OV. It decrypts w using uk’s public key and
compares the plaintext with h0(keyk).



Algorithm 1: Merkle-Sign protocol for FL.

Require: A watermarking scheme WM, security parameters
N and L, hash functions h0, h1 and h2. A verification
community regulated by a consensus protocol.

Ensure: A watermarked model MA and evidence.
1: A generates key0 ← Gen(1N ).
2: Each uk ∈ U generates keyk ← Gen(1N ), submits it

and hash1(keyk|uk) to A.
3: For each uk, A generates key†k ← Gen(1N ).
4: A initializes a clean model.
5: while not terminate do
6: For each uk, A embeds KEYsk = (key0,key

†
k)

into the current model as MWM,k, obtains VERsk =

(verify0,verify
†
k).

7: A signs and broadcasts to the community:

〈time‖Merkle(KEYsk,VERsk,info)〉.
8: A transmits MWM,k to uk.
9: Each uk uploads the encrypted gradient to A.

10: A averages the gradients and updates the clean
model.

11: end while
12: A embeds KEYs = {keyk}Kk=0 into the final model

MA, obtains VERs = {verifyk}Kk=0.
13: A signs and broadcasts to the community:

〈time‖Merkle(KEYs,VERs,info)〉.
14: A sends the intermedia of Merkle(KEYs, VERs,

info) and verifyk to uk.
15: A publishes MA.
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Figure 3: The Merkle-Sign watermarking framework for
centralized FL.

Meanwhile, h1 for the survelliance keys and all verifiers
in Algo. 1 is the encryption module using A’s private key
combined with h0.

The output of Merkle is its root Troot ∈ {0, 1}r, the in-
termedia are the values of all the remaining nodes. An in-
stance for Merkle for K = 2 authors is demonstrated in
Fig. 4. To justify the ownership, an author, e.g., u1 submits
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Figure 4: Merkle on three keys.

key1, verify1, info and the necessary information for
deriving Troot, i.e., T001, T100, T11, T000, T01, and T101 to the
community providing OV service. Any party given the pub-
lic key of uk and the access to h0, h2 can independently ex-
amine whether the evidence is consistent with the suspicious
model and the recorded time-stamps.

Since the length of the root of the Merkle-tree is a con-
stant, the traffic in authorization during each epoch (the 7th
line in Algo. 1) does not grow with K. The burden is shifted
to the identity proof, where an extra amount of information
that is the same order as the height of the Merkle-tree, i.e.,
O(lnK), needs to be submitted. We now analyze four addi-
tional requirements in FL.

Independency The aggregator has embedded keyk into
the DNN product, transmitted verifyk and the intermedi-
ate outputs of runing Merkle to uk. Therefore, uk can ver-
ify its ownership overMA by presenting (keyk,verifyk)
and a list of hashed strings, from which Troot can be correctly
recovered. Such OV does not involve other cooperators.

Privacy-preserving The privacy-preserving property can
be formulated as the following theorem:

Theorem 1: Under the Merkle-Sign protocol, the proba-
bility that us succeeds in passing verifyk is negligible.

Proof: We prove this statement by reduction. If us can
use an algorithm Afalsify to generate a legal key and passes
verifyk then an algorithm Ainvert that inverts h0 can be
built as in Algo. 2.

In Algo. 2, the environment in which Afalsify operates is
identical to that of us who aims to breach the ownership of
uk. Ainvert suceeds in inverting h0(x) iff Afalsify succeeds,
so the probabilities of both events are identical. The preim-
age resistance assumption of h0 and the unambiguity condi-
tion (1) indicate that such probability is negligible, hence an
effective Afalsify does not exist.



Algorithm 2: Ainvert that inverts h0.

Require: algorithm Afalsify, with which us can pretend to
be uk with non-negligible probability, y = h0(x).

Ensure: x̃ such that h0(x̃) = y.
1: Generate and distribute public and private keys for all

authors.
2: Simulate Algo. 1 with h0(keyk) = y.
3: Run Afalsify on the intermedia of the Merkle-tree and

verifyk.
4: Return whatever Afalsify returns.

Traitor-tracing Since key0 and key†k are intractable to
the traitor uk following the covertness of the underlying
watermarking scheme, uk cannot spoil them from the dis-
tributed model. A can examine the surveillance key from
the pirated model to locate the traitor. For example, when A
finds verify†k combined with the pirated model recognizes
key†k, i.e., verify†k(M,key†k) = 1, then uk is the traitor.

Recovery An adversary eavesdropping uk’s OV can spoil
keyk so uk’s evidence is no longer related to the pirated
model. To recover its ownership, uk requests its neighbor
w.r.t. the Merkle-tree to submit its evidence to the verifica-
tion community. For example, in Figure. 4, u1 can ask A to
submit its evidence and proves that it is a legal owner of the
suspicious DNN model. Then u1’s ownership is recovered
given the fact that its evidence (key1,verify1) is consis-
tent withA’s information within the Merkle-tree, in particu-
lar T001 and T100. Therefore u1 must have been incorporated
as A’s co-author before A broadcasting the message as in
the 13th step in Algo. 1. Each recovery involves one extra
evidence, so only one co-author is affected and malicious au-
thors cannot actively sabotage this process. Spoiling all keys
requires an adversary to eavesdrop on all OV requests of po-
tential co-authors, which is extremely hard. Merkle-Sign
remains secure against piracy even if the recovery mecha-
nism is allowed.

Theorem 2: Under Merkle-Sign, the probability of pirat-
ing a published model is negligible.

Proof: The proof by reduction is similar to that of Theo-
rem 1, see Appendix. A for details.

Generating robust triggers for Merkle-Sign
Current backdoor-based schemes can hardly be directly
adopted in Merkle-Sign for two reasons: (i) The defi-
nition of Gen is ambigious, and the correlation between
keys and triggers are ambigious. (ii) Most triggers lie in
the same domain that is accessible for the adversary (e.g.,
white noise). Therefore, spoiling the watermark of one au-
thor brings potential harm to the ownership of other authors.

To accommodate to the black-box setting, we design a
new trigger generation scheme, Autoencoder-based Trigger
Generator for Federated learning (ATGF).

As illustrated in Fig. 5, the aggregator A distributes an
autoencoder structure AE. Each author uk then trains the au-
toencoder into AEk on its local dataset (this dataset is not
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Figure 5: Building the trigger generator in ATGF.

necessarily that for the FL). Then A averages the numerical
parametes across all autoencoders and obtains:

AEA =
1

K

K∑
k=1

AEk.

To generate triggers, key is mapped into a collection of nu-
merical vectors and fed into AEA’s decoder, DecD. The cor-
responding labels are given by another pseudorandom map-
ping conditioned on key.

As an average of autoencoders trained on distinctive
datasets, the outputs of DecD are subject to a mixed and
complex distribution. Therefore, the spoil attack against any
specific trigger from ATGF is not going to harm other trig-
gers significantly, hence ensuring the security of Merkle-
Sign against adaptive attacks.

Experiment and Discussions
Settings
To study the performance of Merkle-Sign and the ap-
plicability of current watermarking schemes in the FL sce-
nario, we selected five tasks: MNIST (Deng 2012), Fash-
ion (Xiao, Rasul, and Vollgraf 2017), CIFAR10, and CI-
FAR100 (Krizhevsky, Hinton et al. 2009) with DNN archi-
tectures ResNet-18 and ResNet-50 (He et al. 2016) for eval-
uation. All experiments were conducted in PyTorch. We
adopted Adam optimizer with a three-stage learning rate de-
creasing schedule.

Revisiting watermarking schemes
To test the adapticity of established watermarking schemes
with Merkle-Sign protocol, we evaluated six SOTA can-
didates, including: Uchida (Uchida et al. 2017), random trig-
ger (Zhu et al. 2020), Wonder Filter (WF) (Li et al.
2019), MTL-Sign (MS) (Li and Wang 2021), WAFFLE (Atli
et al. 2020), and ATGF. Note that privacy-preserving, traitor-
tracing, and recovery have been secured by Theorem 1, the
discussion in the section before, and Theorem 2 respectively.
Therefore, we are then interested in the upper bound of au-
thors assuming reliable independency OV and the operating
time for traitor-tracing and recovery.

In Uchida, the key generation process selects 20 param-
eters from the DNN model architecture and 20 digits in



Table 2: Evaluation of watermarking capacity on ResNet-18 (left) and ResNet-50 (right).

Dataset Watermarking schemes
Uchida Rand WF MS WAFFLE ATGF

MNIST 8750 373 453 9503 312 350

Fashion ≥10000 513 588 ≥10000 520 519

CIFAR10 ≥10000 572 663 ≥10000 543 582

CIFAR100 ≥10000 610 797 ≥10000 642 612

Dataset Watermarking schemes
Uchida Rand WF MS WAFFLE ATGF

MNIST ≥10000 411 494 ≥10000 398 417

Fashion ≥10000 540 669 ≥10000 565 580

CIFAR10 ≥10000 612 773 ≥10000 598 600

CIFAR100 ≥10000 712 779 ≥10000 744 710

the range [−0.5, 0.5] as the watermark. In the random trig-
ger scheme, WF, and WAFFLE, we generated 10 images for
each author as backdoor triggers. For MS, the key generation
process selected a random set of 20 digits from [1, 8000],
mapped them into QRcodes, and assigned them with binary
labels. As for ATGF, we adopted an autoencoder with ReLU
activation functions whose intermediate number of neurons
are: 784, 256, 32, 256, 784. Each local autoencoder is trained
on 1

K of the MNIST dataset. For each author, 10 triggers
were generated using ATGF.

The capacity of independent OV We computed the wa-
termark capacity of all schemes as defined by (2), which
measures the upper bound of K that ensures independent
OV for each author. For a given model and a given dataset,
the threshold of performance decline δ is set as the classi-
fication error rate of the original clean model. The results
are collected in Table 2, the maximal capacity was set to
10,000. We observed that the more complicated model have
a larger capacity as expected, while simple models’ capac-
ity is poor apart from some vanilla cases, more details are
provided in Appendix. . Uchida and MS had larger capacity
since these weight-based schemes have a less impact on the
DNN model. Among backdoor-based schemes, WF had the
largest capacity, since triggers adopted in WF deviate from
ordinary images significantly. For these schemes, the capac-
ity becomes a bottleneck when K ≥ 300.

Efficiency of traitor-tracing and recovery In Merkle-
Sign, traitor-tracing is done by examing all surveillance
keys, and recovery is done by examing one key and recon-
structing the Merkle-tree, so their respective complexity is
O(K) and O(lnK). We recorded the time of watermark
embedding for the five watermarking schemes for ResNet-
50, K = 200 in Table. 3. One tuning epoch for ResNet-50
took 44s to 200s averagely, it is observed that the burden of
watermarking is at most upper bounded by 1.6% during the
normal training process and is uniformly negligible.

Convergence of FL under Merkle-Sign
Although the security of Merkle-Sign has been guaran-
teed in theory, it remains unclear whether the DNN can cor-
rectly converge or not when being watermarked intermedi-
ately. To measure the impact of watermarking on the conver-
gence, we varied the number of authorsK in {50, 100, 200},
adopted model averaging for aggregation, and conducted
FL. The decline of loss during the FL training and the fi-
nal classification loss are illustrated in Fig. 6 and Fig. 7. The

Table 3: Time consumption for security functions.

Task Uchida M-S Rand WF WAFFLE ATGF

Traitor-
tracing (s)

2.1 26.2 27.0 62.5 24.3 25.4

Recovery
(ms) 121 362 369 717 334 353

scheme of Uchida has the smallest impact on the conver-
gence, that of the other white-box scheme, MS, is also very
small. For the three backdoor-based watermarking schemes,
the convergence is at risk when K approaches the water-
marking capacity. However, in all cases, the decline of the
final model’s classification accuracy is upper bounded by
3.1% and is tolerable. Therefore, applying Merkle-Sign
does not significantly threaten the FL system.

Security against the spoil attack
Under Merkle-Sign, the cooperating authors can recover
a spoiled identity proof by putting forward new evidence
and reconstructing the Merkle-tree. However, this defense
might be breached since the spoil attack against one water-
mark may erase the watermarks of other authors (unrevealed
to the adversary) at the same time. This phenomenon, espe-
cially evident in backdoor-based schemes, is a threat to the
recovery property.

To evaluate the security against the spoil attack under dif-
ferent configurations, we measured the percentage of wa-
termarks that can be correctly verified after undertaking the
spoil attack against one watermark. This metric reflects the
correlation between different watermarks within the model.
The lower this percentage is, the less correlated are the wa-
termarks and the less effective the spoil attack is.

We adopted CIFAR10 for evaluation (it was empirically
observed that this metric was almost invariant under differ-
ent datasets). For Uchida, the spoil attack simply replaced
the watermarked parameters with random numbers. For the
spoil attack against MS, we fixed the watermarking backend
and tuned the DNN model until its watermarking branch
failed to work. For the backdoor-based schemes, we tuned
the DNN model to fit arbitrary labels on one set of triggers.
The results are shown in Table 4.

Table 4 indicates that white-box schemes are more ro-



(a) MNIST, K = 50. (b) CIFAR100, K = 50. (c) MNIST, K = 200. (d) CIFAR100, K = 200.

Figure 6: The validation loss of ResNet-50 in FL under Merkle-Sign.

(a) MNIST. (b) Fashion. (c) CIFAR10. (d) CIFAR100.

Figure 7: The classification accuracy of ResNet-50 in FL under Merkle-Sign.

Table 4: Percentage of correctly verified watermarks (in %).

K
White-box schemes Black-box schemes
Uchida M-S Rand WF WAFFLE ATGF

50 100 85 61 68 71 100
100 100 80 66 64 69 98
200 100 73 59 64 69 99

bust against the spoil attack since spoiling one watermark
has little impact on others. For schemes as the random trig-
ger, WF, and WAFFLE, spoiling one single watermark can
simultaneously invalidate many others. Under these config-
urations, the security of innocent authors and the recov-
ery property are at risk. Instead, triggers generated from
ATGF are subject to a more diversified distribution and re-
sist such correlated spoil, as demonstrated in Fig. 8. Despite

(a) Random. (b) Random. (c) WF. (d) WF. (e) WAFFLE.

(f) WAFFLE. (g) ATGF. (h) ATGF. (i) ATGF. (j) ATGF.

Figure 8: Triggers in different watermarking schemes.

the privileges of Uchida, it is also the scheme that is the eas-

iest to spoil, which costs approximately 21ms. Meanwhile,
white-box watermark schemes require the author to obtain
and transmit the entire pirated DNN model to the verifica-
tion community for proof. In contrast, the black-box setting
where the author only has to publicize the link to the suspi-
cious service deployed by the adversary. Among compared
schemes, ATGF is the optimal choice concerning the spoil
attack under the black-box setting, this is because the dis-
tribution of triggers in ATGF is hidden from the adversary.
Therefore, we suggest using the combination of Merkle-
Sign and ATGF (whenK ≤ 300), under which a high level
of security is achieved.

Conclusion
This paper presents Merkle-Sign, a protocol for DNN
model protection in FL by watermarking. After formulat-
ing the security requirements, we combine the watermark-
ing schemes with a data structure for distributed storage.
The security of Merkle-Sign can be reduced to that of
basic DNN watermarking schemes and cryptological primi-
tives. To generalize Merkle-Sign to the black-box setting,
we propose ATGF that generates triggers robust against the
spoil attack. Experimental results indicated that Merkle-
Sign can provide the desired security in FL. Moreover, ex-
tra requirements introduced by Merkle-Sign point the di-
rection of designing new watermarking schemes.
Merkle-Sign can be combined with other security

mechanisms in FL to simultaneously protect privacy and
ownership. Our future studies are going to exploit water-
marking schemes that can be more conveniently combined
with distributed learning systems, e.g., watermarks that are
robust under the aggregation operator so the embedding can
be conducted in a completely decentralized manner.
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The Proof of Theorem 2
Proof: To pirate a model under this verification framework,
an adversary can take three possible approaches: (1) Broad-
casting a fake message with an early time-stamp than A’s,
writing its key into the model, and declaring ownership. (2)
Pretending to be an author that has participated in FL. (3)
Pretending to be an author whose key has been spoiled.

The first attack succeeds with negligible probability since
the adversary has to correctly guess the structure of the DNN
model to correctly provides info. Moreover, the adversary
has to tune the DNN model so its watermarking branch is
consistent with its key, during which process the verifier
module is fixed. This process might bring damage to the
model’s performance.

For the second attack, if the adversary has not eaves-
dropped any verification proof then it has to find the preim-
age of Troot under hash2 to forge a legal key. Hence a PPT
adversary Apretend that suceeds in pretending to be an unin-
formed author participating FL can be used to build a PPT
adversary Acollide that finds a collision w.r.t. hash2. For-
mally, Acollide operates as Algo. 3. The event that Acollide

Algorithm 3: PPT Acollide that finds a collsion for hash2.

Require: A PPT algorithm Apretend, with which an adver-
sary can falsify itself as us without eavesdropping any
proof with non-negligible probability.

Ensure: x and y such hash2(y) = hash2(x).
1: Ainvert generates and distributed public and private keys

for all authors.
2: Acollide receives the key from the adversary runing
Apretend.

3: Acollide simulates Algo. 1, builds a Merkle-tree with in-
termediate nodes T0 and T1.

4: Acollide runs Apretend on the root node of its Merkle-tree.
5: Acollide receives Apretend’s output, which contains

enough information for computing Troot, especially
nodes of the second level T̃0 and T̃1.

6: Acollide returns T0‖T1 and T̃0‖T̃1.

succeeds in finding a collision pair x 6= y happens if:Apretend

succeeds in pretending to be an author and T0‖T1 6= T̃0‖T̃1.
Therefore:

Pr([Acollide wins]) ≥ Pr([Apretent wins]∧ [T0‖T1 6= T̃0‖T̃1]).

Recall that the collision resistance of hash2 implies that
Pr([Acollide wins]) is upper bounded by a negligible function,
which indicates that:

Pr([Apretent wins] ∧ [T0‖T1 = T̃0‖T̃1])

=Pr([Apretent wins])− Pr([Apretent wins] ∧ [T0‖T1 6= T̃0‖T̃1])

is non-negligible given the assumption that
Pr([Apretent wins]) is non-negligible. This further im-
plies that Apretend can efficiently inverse hash2 with
non-negligible probability, which is contradictive to the fact
that hash2 is also preimage resistant 1. Therefore such
Apretend does not exist.

1Collision resistance implies preimage resistance.

If the adversary has eavesdropped a verification proof
then it has to find the preimage of a string under hash1 for
at least once. Similar to Algo. 2, the impossibility of such an
attack is reduced to the security of hash1.

For the third attack, the adversary has to invert hash1 for
at least once, which succeeds only with negligible probabil-
ity as in the second case in the second attack.

Detailed implementations for experiments
Merkle-Sign for Peer-to-Peer FL

The proposed framework can be generalized to peer-to-peer
(P2P), or decentralized FL, in which no aggregator is in-
volved in the entire process. In P2P FL, authors form a chain
along with the DNN model is trained and transmitted. An il-
lustration of the P2P FL is in Fig. 9.

Co-author u1

M(1)

Co-author u2

M(K)

Co-author uK

· · ·

Model distribution.

Local training.

Publishing.

Figure 9: The architectures of P2P FL.

To adapt to P2P FL, Merkle-Sign requires all authors U
follow Algo. 4 as shown in Figure 10. The function hash1

adopted by author u(t) in the seventh and the eleventh steps
is Enc(t)(hash0(·)). Finally, u(T ) uses Enc(T )(hash0(·))
to mask its key set and verifiers in the twelfth step.

We assume that the watermarking scheme only modifies
a tiny part of the model (e.g, few parameters or few trig-
ger samples) so such embedding is not going to prevent the
model from convergence. The capacity of the model w.r.t.
the watermarking scheme has to be larger than T to ensure
the model’s performance. The basic security requirements,
the independency, the privacy-preserving, and the recovery
properties hold with similar discussion as in the aggregator-
based case. For traitor-tracing, the authors U follow Algo. 5.
The correctness is guaranteed by the following theorem.

Theorem 3: If u(t) is the traitor who sells the model, then
Algo. 5 can almost always correctly identify it.

Proof: We assume that u(t) follows Algo. 4 except for its
unauthorized reselling. Otherwise, it cannot verify and pro-
tect its contribution in the model, and it might be identified
as the traitor from the fourth step in Algo. 5. Compared with



Algorithm 4: Merkle-Sign for P2P FL.

Require: A one-time watermarking scheme WM, security
parameters N , L, functions hash1 and hash2.

Ensure: A watermarked model MA and evidence for veri-
fication.

1: Each uk ∈ U generates key k ← Gen(1N ).
2: U forms a schedule (u(1), u(2), · · · , u(T )).
3: u(0) initializes a clean model.
4: for t = 0 to T − 1 do
5: u(t) generates time-dependent key†(t) ← Gen(1N ).
6: u(t) tunes the model, embeds KEYs(t) ={

key(t),key
†
(t)

}
into the model, obtains

VERs(t) =
{
verify(t),verify

†
(t)

}
.

7: u(t) signs and broadcasts the following message to
the verification community.

〈time‖Merkle(KEYs(t),VERs(t),info)〉.
8: u(t) transmits the model to the u(t+1).
9: end for

10: u(T ) tunes and embeds K(T ) into the model, obtains{
verify(T )

}
.

11: Each uk ∈ U/
{
u(T )

}
sends {hash1(keyk)} and

{hash1(verifyk)} to u(T ).
12: u(T ) builds a Merkle-tree from the information received,

signs and broadcasts:

〈time‖Merkle(KEYs,VERs,info)〉.
13: u(T ) publishes the model.

Co-author u(1)

Co-author u(2) Co-author u(K)

· · ·

Model distribution.

after watermarking

Local training.

Generating.

key(1)

key
†
(2)

key(K)

Figure 10: The Merkle-Sign watermarking framework
for P2P FL.

Algorithm 5: Traitor-tracing under Merkle-Sign for P2P
FL.
Require: The pirated model M .
Ensure: The index of the traitor.

1: for t = 1 to T do
2: u(t) proves its ownership over M .
3: u(t) presents to its co-authors: key†(t), verify

†
(t),

and
{
hash1(key(t)),hash1(verify(t))

}
.

4: Other authors check whether the presented informa-
tion is consistent with u(t)’s historical broadcasting.

5: Other authors vote on verify†(t)
(
M,key†(t)

)
.

6: If the voted result is zero then return (t− 1).
7: end for
8: Return (T ).

the model released by u(t) to u(t+1), the model in u(t−1)’s
perspective does not contain key†(t). The secrecy of key†(t)
is protected by the CPA-security, the covertness, and the
privacy-preserving property of the underlying watermark-
ing scheme, together with the one-wayness of Merkle. If
u(t−1) can successfully embed this surveillance key onto the
model and escape tracing then it must have obtained key†(t),
which happens only with negligible probability. By the def-
inition of the correctness of WM, u(t−1) cannot forge the evi-
dence for key†(t). Therefore, Algo. 5 is sufficient to identify
u(t−1) as the traitor.


